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1 Introduction

The CM software implements the construction of ring class fields of imaginary quadratic number
fields and of elliptic curves with complex multiplication via floating point approximations. It
consists of a library that can be called from within a C program and of executable command
line applications. For the implemented algorithms, see [Enge09], page 13.

Given an imaginary quadratic discriminant D < 0, the associated ring class field is generated
by the values of modular functions in special arguments taken from the quadratic field Q(

√
D);

these values are called singular values or class invariants. Depending on D, different modular
functions need to be chosen; we call the suitable ones class functions. CM implements (to a
greater or lesser extent) all major class invariants described in the literature.

Licence

CM is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public licence as published by the Free Software Foundation; either version 3 of the
licence, or (at your option) any later version.

CM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; with-
out even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public licence for more details.

You should have received a copy of the GNU General Public licence along with CM; see the file
COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.
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2 Installation

2.1 Instructions

CM relies on a number of external libraries, which need to be installed before compiling CM:
GNU MP (see [Gretal20], page 13, version 4.3.2 or higher), GNU MPFR (see [HaLePeZi20],
page 13, version 3.0.0 or higher), GNU MPC (see [EnGaThZi20], page 13, version 1.0.0 or
higher), MPFRCX (see [Enge21], page 13, version 0.6.3 or higher) and PARI/GP (see [Pari],
page 13, version 2.11.0 or higher, compiled with GMP as the arithmetic kernel). Additionally,
FLINT (see [Flint], page 13) can be used if it is available, but it is not mandatory. Compilation
of CM needs a standards compliant C compiler (preferably GCC).

These are the steps needed to install CM, provided that the required libraries are installed in
standard locations:

1. ‘tar xzf cm-0.4.3.tar.gz’

2. ‘cd cm-0.4.3’

3. ‘./configure’

4. ‘make’

This compiles CM.

5. ‘make check’

This performs a few tests to check that CM has been built correctly.

If you get error messages, please report them to the author.

6. ‘make install’

This copies the executable applications into the directory /usr/local/bin, the header
files into /usr/local/include, the library files into /usr/local/lib, the data files into
subdirectories of /usr/local/share/cm (see Section 2.3 [Data], page 3) and the file cm.info
into /usr/local/share/info.

It is possible to pass the option ‘--prefix=/my/install/directory’ to the ‘./configure’
step above, so that all files go into subdirectories of /my/install/directory instead of
/usr/local.

If auxiliary libraries are to be found in non-standard locations, these need to be passed in the
‘./configure’ step above by adding parameters

• ‘--with-gmp=<gmp_install_dir>’,

• ‘--with-mpfr=<mpfr_install_dir>’,

• ‘--with-mpc=<mpc_install_dir>’,

• ‘--with-mpfrcx=<mpfrcx_install_dir>’

• ‘--with-pari=<pari_install_dir>’. and

• ‘--with-flint=<flint_install_dir>’.

If you wish to compile the parallel, MPI version ecpp-mpi of the ecpp binary for elliptic curve
primality proofs, you need to pass the option ‘--enable-mpi’ (and, of course, have an MPI
library installed against which the binary will be compiled and linked).

For an exhaustive list of configuration parameters, execute ‘./configure --help’.
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2.2 Documentation

Besides the texinfo documentation obtained by a simple invocation of ‘make’, the commands
‘make dvi’, ‘make ps’, ‘make pdf’ and ‘make html’ create the documentation in the corresponding
formats.

2.3 Data

Some parameterised families of class functions need additional data (namely, modular polyno-
mials), which depend on the parameter value, to deduce the equation of an elliptic curve from
the class polynomial. A few modular polynomials are provided and stored in subdirectories of
/usr/local/share/cm (or of the subdirectory share/cm of the installation directory provided
with the ‘--prefix’ configuration option, respectively). More precisely, these bivariate polyno-
mials relate the class function with the modular function j; instantiating in a class invariant
makes it possible to compute the j-invariant of a corresponding elliptic curve as a root of the
modular polynomial.

An infinite amount of data is needed to handle all possible discriminants with a given family of
class functions, and already covering all moderately sized discriminants would require gigabytes
of data. So only a very small sample of modular polynomials is currently distributed; if you
need more, please write to the author.

More precisely, the subdirectory /usr/local/share/cm/df contains all modular polynomi-
als for double η-quotients that are of the minimally possible degree 2 in j; the subdirectory
/usr/local/share/cm/af contains all modular polynomials for Atkin functions of degree 2 in
j. All these are functions of some level N , invariant under the Fricke-Atkin-Lehner involution,
for which the modular curve X+

0 (N) is of genus 0. As a consequence, both roots in j of the
instantiated modular polynomial yield a suitable CM elliptic curve. Finally the subdirectory
/usr/local/share/cm/mf contains all modular polynomials for triple η-quotients of the minimal
degree 4 or of degree 8 in j.
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3 Library

The code of CM comes first and foremost as a C library making its functionalities accessible to
external applications. The names of all publicly accessible, non-static functions and types start
by cm_ to create a name space proper to CM.

If you are not interested in programming in library mode, the project also comes with a few
sample applications described in more detail in Chapter 4 [Applications], page 9; all of them are
implemented with just a few library calls, so describing the library first makes it easier to give
the parameter choices for the applications, and enables you to easily create small modifications.

Public constants, types and functions are defined in the file cm.h; the exact composition of the
types is not important to document here, since they are usually initialised by calls to dedicated
functions and then passed to further functions needing them. In general, the usual trick known
from GMP is applied, that is, the types are one-dimensional arrays of structs, so that the
difference between passing arguments by value or by reference disappears and it is usually not
necessary to use the & and * operators for referencing and dereferencing. Also in GMP style,
parameters modified by functions are usually passed first.

3.1 CM parameters

The cm_param_t type holds the main parameters fixed before computing the class field of an
imaginary-quadratic order. This is first and foremost the quadratic discriminant D < 0. For
most applications, it will be enough to consider fundamental discriminants, but this is not
a requirement of the code, so all quadratic discriminants are accepted; if a non-fundamental
discriminant is provided, the corresponding ring class field is computed. The second main
parameter provides the type of class function used, either a single function or one out of a
parameterised family; in the latter case also these parameter values are stored.

[Type]int_cl_t
This signed 64 bit integer type is used for discriminants.

[Type]cm_param_t
This type, used for holding the main parameters of a CM setting, is defined using the GMP
trick of a one-dimensional array of a struct. There should be no need to manipulate its fields
directly.

[Function]bool cm_param_init (cm param t param, int cl t d, char invariant,
int maxdeg, int subfield, bool verbose)

This function initialises the param object depending on the main input d, a negative quadratic
discriminant, and invariant, one of the following constants describing a class function or a
parameterised family of class functions. Every class function has a height factor associated
to it, which indicates by how much (asymptotically for |D| → ∞) the number of digits of the
largest coefficient, or equivalently the precision required for the floating point approximations,
is smaller than for the j-function; the latter works for every discriminant, but leads to the
largest class polynomials. On the other hand, alternative class functions work only for a
restricted class of discriminants each.

• CM_INVARIANT_J: The modular function j with height factor 1 by definition.

• CM_INVARIANT_GAMMA3: The modular function
√
d γ3, where γ3 is a square root of j −

1728. The additional factor of
√
d is needed only to make the class polynomial real. Its

height factor is 2, and it works whenever D is odd.

• CM_INVARIANT_GAMMA2: The modular function γ2, a cube root of j. Its height factor is
3, and it works whenever D is not divisible by 3.
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• CM_INVARIANT_WEBER: One of the Weber functions f , f1 or f2 or its powers. This is a
finite family of class functions. One of them works when D is divisible by 4, but not 32,
with a height factor between 6 and 72.

• CM_INVARIANT_SIMPLEETA: Simple η-quotients of the form η(z)/η(z/N) for an integer
N and their powers (to an exponent that divides 24), see [EnMo14], page 13. The code
implements only prime power levels N for which X0(N) is of genus 0 (and the simple
η-quotient is a hauptmodul), so that a CM elliptic curve may be deduced without the use
of a modular polynomial; that is, N ∈ {3, 5, 7, 13, 4, 9, 25}. The height factor is between
2 and 24.

• CM_INVARIANT_DOUBLEETA: Double η-quotients of the form
(η(z/p1)η(z/p2))/(η(z)η(z/(p1p2))) for primes p1 and p2, and their powers, see
[EnSc04], page 13, and [EnSc13], page 13. The level of the function is essentially
N = p1p2 (or, to be more precise, a multiple of N and a divisor of 24N , which depends
on the congruences satisfied by the pi modulo 24 and the exact power used). For
p1, p2 → ∞, these class functions approach a height factor of 12; the optimal height
factor of 37 is reached for p1 = 2, p2 = 73.

• CM_INVARIANT_MULTIETA: Multiple η-quotients for k primes p1, ..., pk of level N =
p1 · · · pk; this is the quotient of two products of η(z/n), where n varies over the 2k

divisors of n, and the n with an odd number of primes appear in the numerator, those
with an even number of primes in the denominator, see [EnSc13], page 13. The code is
implemented generically, but currently only triple η-quotients (with k = 3) are actually
used.

• CM_INVARIANT_ATKIN: Functions for X+
0 (N) of genus 0 for a prime level

N ∈ {47, 59, 71, 131}; the functions are optimal in the sense that they have a pole of
lowest degree at the cusp for a given family. The height factor is between 24 and 36.
On the other hand, this finite family of class functions is obtained by applying certain
Hecke operators to η(z)η(Nz), and the numerical evaluation of these Hecke operators is
costly.

For families of class functions, the function selects the admissible parameter combination
yielding the smallest class polynomial. Admissibility depends mainly on the discriminant (or
more precisely, on the splitting behaviour of the primes dividing the level N in Q(

√
D)), but

also on the values of the further arguments to the function.

The parameter maxdeg sets an upper limit on the degree in j of the modular polynomial;
it has an effect only for infinite families of class functions, that is, when invariant is CM_

INVARIANT_DOUBLEETA or CM_INVARIANT_MULTIETA. When set to 0, it is disabled; when set
to -1, it is internally set to the degree for which modular polynomials are distributed, which
makes it possible to derive a CM elliptic curve from the class polynomial.

Double and multiple η-quotients are known to generate strict subfields of the class field in
some cases, see [EnSc13], page 13. Whether this is admitted depends on the value of subfield,
which can take the following constants:

• CM_SUBFIELD_NEVER: Do not choose parameters known to generate subfields. This may
still happen by chance (and break the computation of a Galois tower decomposition).
This should be chosen to obtain a generator of the class field.

• CM_SUBFIELD_PREFERRED: Whenever possible, compute a subfield of the class field, and
if several choices are possible, prefer the one with the biggest index. This speeds up the
computation of elliptic curve primality proofs (ECPP), where finding a root of the class
polynomial becomes one of the bottlenecks for large input.

• CM_SUBFIELD_OPTIMAL: Compute the field with the smallest class polynomial, regardless
of its degree. This will often be a subfield, if available, since the index of the subfield
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lowers the size of the class polynomial by a quadratic factor, acting on the degree of the
polynomial and on the size of its coefficients. This is intended to yield optimal speed.

If verbose is set to true, some information is printed on screen during execution.

If an admissible parameter combination is found, the function stores it in param and returns
true; otherwise it returns false.

Since the function does not allocate any memory, there is no corresponding function cm_

param_clear.

3.2 Computing class polynomials

[Type]cm_class_t
This type is also implemented as a one-dimensional array of a struct, but there should not
be any need to access its fields. It stores information about the ring class group and, once
computed, the class polynomial or its decomposition as a tower of Galois fields.

The code for computing class polynomials relies on the PARI library, which needs to be initialised
before calling any of its functions. While it would be possible to hide this initialisation from
the user (inside cm_class_init, for instance), this would make it more difficult to mix CM
code with code that uses the PARI library for other purposes. So there are special functions for
initialising and clearing the PARI library.

[Function]void cm_pari_init ()
This function must be called before any other function operating on class polynomials. Es-
sentially it encapsulates a call to pari_init.

[Function]void cm_pari_clear ()
This function should be called at the end of working with the CM library. Essentially it
encapsulates a call to pari_close.

[Function]void cm_class_init (cm class t c, cm param t param, bool verbose)
This function should be called after cm_pari_init. Given a CM parameter param initialised
with a call to cm_param_init, it allocates memory and executes some fast precomputations
(such as the class group), the results of which are stored in c.

If verbose is set to true, some information is printed on screen during execution.

[Function]void cm_class_clear (cm class t *c)
This is the counterpart to cm_class_init and should be called once the class polynomial is
not needed any more to free the allocated space.

[Function]void cm_class_compute (cm class t c, cm param t param, bool
classpol, bool tower, bool verbose)

Given a previously initialised cm_class_t object c and corresponding parameter object
param, the function computes the class polynomial and stores it in c.

More precisely, if classpol is set to true, the function computes the class polynomial in one
variable X defining the class field; if tower is set to true, it computes the same class field as
a tower of relative extensions of prime degree using the asymptotically fast algorithms of see
[EnMo03], page 13. Otherwise said, it computes a univariate polynomial f1 in the variable X1

defining an absolute extension K1/Q (or K1/Q(
√
D), see below), then a bivariate polynomial

f2 in X1 and X2 defining a relative extension K2/K1, and so on. For the function to have
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any effect, at least one of classpol or tower needs to be set to true, and usually exactly one
is enough.

The class polynomial (or the bivariate polynomials defining a tower of Galois extensions)
are either real, that is, they have coefficients in Z; or they are complex, that is, they have
coefficients in the ring of integers of the imaginary-quadratic field Q(

√
D). We write the latter

using the standard basis as Z + Zω, where D0 is the fundamental discriminant attached to
D and ω =

√
D0/2 if D0 is even and ω = (1 +

√
D0)/2 if D0 is odd.

If verbose is set to true, some information is printed on screen during execution.

[Function]void cm_class_print_pari (FILE* file, cm class srcptr c, char* fun,
char* var)

Print the computed class polynomial or the relative polynomials defining a number field tower
from c to file (which may be stdout, for instance) in a format that can be copy-pasted or
loaded into PARI/GP. The arguments fun and var define the function and variable names
used; if set to NULL, default values are given.

If computed, the class polynomial is printed with fun (default f) as the name of the polynomial
in the variable var (default x); if it is complex, then the second basis element ω is abbreviated
to o.

If computed, the class polynomial tower is printed with funi as the name of the i-th polynomial
in var.

3.3 Computing CM elliptic curves

After computing a class field by a call to cm_class_compute (either through a class polynomial
as an absolute extension or as a tower of relative extensions, or both), it can be used to derive
a CM elliptic curve over a finite field. The CM library implements the computation of curves
over prime fields, and also returns a point of prime order on such a curve.

[Function]void cm_curve_and_point (mpz t a, mpz t b, mpz t x, mpz t y,
cm param t param, cm class t c, mpz t p, mpz t l, mpz t co, const char*
modpoldir, bool print, bool verbose)

Let c contain a computed class polynomial for the CM parameters param. Let p≥ 5 be a
prime such that the elliptic curve with CM by the discriminant D in param has l·co points,
where l is prime and co not divisible by l; otherwise said, there are integers t and v such that
p+1− t =l·co and 4p= t2− v2D. Then the function returns in a and b the parameters of an
elliptic curve E : Y 2 = X3+aX+b over the finite field Fp and in x and y a point P = (x,y)
of order l.

modpoldir is the name of the base directory containing subdirectories with modular poly-
nomials for the different families of class functions; for a standard installation, this is
/usr/local/share/cm.

If print is set to true, the computed curve and point coordinates are output on screen.

If verbose is set to true, some additional information is printed on screen during execution.

[Function]void cm_curve_crypto_param (mpz t p, mpz t n, mpz t l, mpz t co,
int cl t d, int fieldsize, bool verbose)

This function computes field parameters for a CM curve over a finite field for the discriminant
d that satisfies the following conditions for use in an elliptic curve cryptosystem; notice that
due to their special nature, CM curves are not recommended for cryptography, and that
further security considerations should be taken into account. As such, the function is mainly
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intended to test cm_curve_and_point. Besides the discriminant it takes fieldsize and outputs
in p the characteristic of a finite prime field with fieldsize bits such that there is an elliptic
curve over Fp with n=l·co points such that l is a (pseudo-)prime and co∈ {1, 2, 4, 8} is the
minimal cofactor reachable with this discriminant.

If verbose is set to true, some information is printed on screen during execution.

3.4 Elliptic Curve Primality Proofs (ECPP)

Primality proving with elliptic curves (ECPP) is one of the main applications of CM elliptic
curves over finite fields. The CM library implements the asymptotically fast version fastECPP
of [FrKlMoWi04], page 13, and [Morain07], page 13.

Certificates are computed and printed in a format compatible with PARI/GP.

[Function]void cm_ecpp (mpz t N, const char* modpoldir, const char* filename,
const char* tmpdir, bool print, bool trust, bool check, int phases, bool
verbose, bool debug)

Given a prime number N, the function computes an ECPP certificate and prints it to screen
if print is set to true. If filename is different from NULL, the final ECPP certificate is output
to the file in PARI/GP format, and to a file with additional suffix .primo in PRIMO format,
and the phase 1 and phase 2 partial results are read from and written to temporary files with
suffices .cert1 and .cert2, respectively. The variable phases is usually set to 0; alternatively,
it can be set to 1, in which case only the first, downrun phase of ECPP is executed; or it can
be set to 2, in which case a (potentially partial) first phase result is read from a file and only
the second, CM phase of ECPP is executed, resulting in a (potentially partial, not ending
with a number below 264) certificate. Using values different from 0 makes sense only when
filename is given at the same time.

If check is set to true, then the certificate is checked; the outcome is printed if verbose is
also set to true. Notice that partial certificates are invalid by definition, even if their content
is so far correct.

The directory modpoldir, usually /usr/local/share/cm, in which modular polynomials are
stored, is required to be passed to cm_curve_and_point.

If trust is set to true, then the input number is trusted to be pseudoprime; otherwise a quick
primality test is run.

If verbose is set to true, some information is printed on screen during execution. In particular,
if both print and verbose are set to false, the function has no visible effect.

If additionally to verbose, debug is set to true, more information, in particular on timing of
different steps of the ECPP algorithm, which is useful only for debugging purposes, is printed
on screen.

The parameter tmpdir, if not NULL, indicates a directory where files can be written and
read that are normally recomputed for every execution, but that contain data which does
not actually depend on the number to be certified. These could theoretically be distributed
with the code; since they can fill tens of gigabytes, this is not practical, however, and they
are computed and written on the first run. For the MPI code, this directory needs to be
accessible from all MPI processes. If the variable is NULL, the data is recomputed every time.
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4 Applications

CM comes with a few applications: classpol for computing class polynomials and cm for com-
puting a CM elliptic curve that could be used for cryptography, and ecpp for performing elliptic
curve primality proofs. The first two compute one class field or CM elliptic curve and share
a certain number of command line arguments; the third one currently takes no command line
arguments. All of them are implemented with only a few calls to library functions. The following
sections present the functionality of each application and the command line arguments it takes,
and also reproduce the essential part of its code to further illustrate the library interface.

4.1 classpol

The classpol application takes one mandatory argument, -d followed by the absolute value |D|
of the discriminant. It computes and prints on screen the class polynomial for D obtained using
the j-invariant. The additional parameter -v enables more verbose output for the different steps
of the algorithm.

$ classpol -d 207

f = x^6+42653766018394018375*x^5-5002547112103664005187500*x^4

+1819343755841562591564610147379736328125*x^3

-210672109851582446065248197114115955810546875*x^2

+12041028291910181818274355885092809398864746093750*x

-183426864580818496179793649372867188930511474609375

Class polynomials for alternative class invariants are selected using the -i argument followed
by the type of class function; this is the same as the library constants given in Section 3.1 [CM
parameters], page 4, with the prefix CM_INVARIANT_ left out and transformed to lower case; so
CM_INVARIANT_WEBER becomes -iweber, and so on.

$ classpol -d 207 -i doubleeta -v

Discriminant -207, fundamental discriminant -23

Invariant d, parameter 2_73_1_1

Class number 6

...

f = x^6-6*x^5+16*x^4-22*x^3+16*x^2-5*x+1

The verbose output tells us that -207 is not a fundamental discriminant, but a multiple of the
fundamental discriminant -23, and that the double η-quotient used is of level 2·73 raised to the
power 1 (the second 1 is a technical parameter, indicating the maximal power that might be
needed for this level).

After evaluating the command line parameters, the essential part of the code implementing this
functionality takes less than ten lines:

cm_pari_init ();

if (!cm_param_init (param, d, invariant, 0, CM_SUBFIELD_NEVER, verbose))

exit (1);

cm_class_init (c, param, verbose);

cm_class_compute (c, param, true, false, verbose);

cm_class_print_pari (stdout, c, NULL, NULL, NULL);

cm_class_clear (c);

cm_pari_clear ();

The call to cm_param_init initialises the variable param by checking whether the invariant is
suitable for the given discriminants and choosing a class function if this is the case (such as



10 CM 0.4.3

the η-quotient of level 39 in the example above). Assuming that the goal is to compute a class
field, parameter combinations known to lead to a strict subfield are excluded by the constant
CM_SUBFIELD_NEVER. The 0 indicates that the degree of modular polynomials may be arbitrarily
high, since they would only be needed to derive CM elliptic curves.

The calls to cm_pari_init and cm_class_init and their respective clear counterparts reserve
and free memory and carry out relatively fast precomputations. The main activity is launched
through the call to cm_class_compute, in which the boolean values indicate that an absolute
class polynomial is to be computed and not a tower of relative extensions. The result is output
by a call to cm_class_print_pari.

4.2 cm

The cm application takes the same command line arguments -d, -i and -v as classpol, See
Section 4.1 [classpol], page 9. It computes a CM curve for the discriminant D over a prime field
of 256 bits such that its cardinality is “as prime as possible”, that is prime up to possibly a factor
of 2, 4 or 8 depending on D. The -v parameter is needed to print the computed parameters on
screen.

cm -d 207 -i doubleeta -v

Invariant d, parameter 2_13_2_2

...

p = 115792089237316195398462578067141184801329650642019283009460547375490535224057

n = 4 * 28948022309329048849615644516785296200162271477044351520651896284230459251901

a = 98163214185470497050837006097264380779085406912553098655936731136039029295843

b = 32285125078980297712817393022671977836076850091512599038419136678099671035526

x = 103397644567197135309633378171745128589056056673675319889645656993433387644320

y = 72297811879224681619558031933509678790723605942283336960075126018884088267112

The curve has equation E : Y 2 = X3 + aX + b over the finite prime field Fp, and its cardinality
n is 4 times a prime (for a prime cardinality, the discriminant must satisfy D ≡ 5 (mod 8)).
The point of prime order n/4 is given by (x, y).

Besides the same calls to functions initialising and clearing data, the core of the implementation
is as follows:

if (!cm_param_init (param, d, invariant, -1, CM_SUBFIELD_OPTIMAL, verbose))

exit (1);

cm_class_compute (c, param, false, true, verbose);

cm_curve_crypto_param (p, n, l, co, d, 256, verbose);

cm_curve_and_point (a, b, x, y, param, c, p, l, co, CM_MODPOLDIR,

true, verbose);

Parameter initialisation uses the arguments CM_SUBFIELD_OPTIMAL to indicate that the class
invariant expected to be computed in the fastest time should be used, independently of it
leading to a subfield or the full class field; and -1 to limit the search for class invariants for
which modular polynomials are available. (The verbose output shows that the η-quotient of
level 2·73 is replaced by the quotient of level 2·13 raised to the power 2, which is expected to
yield a larger class polynomial, but for which the modular polynomial is distributed with the
code).

The boolean arguments to cm_class_compute lead to the computation of the tower decomposi-
tion of the class field instead of the full class polynomial. The call to cm_curve_crypto_param

determines a suitable 256 bit prime and curve cardinality n, and the call to cm_curve_and_point
obtains and prints the curve and the coordinates of a point of prime order l on the curve.
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4.3 eccp

The ecpp application computes an ECPP certificate for proving the primality of the number
passed with the -n command line argument. It is assumed that this number is a suitably tested
pseudo-prime; in particular, if it is smaller than 264 then it is assumed to be prime, and no
certificate is computed. The number can simply be given in decimal notation, but also by an
arbitrary GP expression.

The argument -p causes printing of the certificate on screen, -v enables printing of progress
information, and -g enables even more verbose debug output.

$ ecpp -n ’nextprime(10^31)’ -p

c = [[10000000000000000000000000000033, -5882759018432034, 12103604, 25,

[3876868516114165308082393519623, 7268598020338906447634857503614]],

[826200196239071096737717, 667597927066, 916, 0,

[376111257001838975439341, 115218092585553575608847]],

[901965279736248361147, 54401389280, 118118316, 0,

[282628664937444390372, 352399418333719760852]]];

The resulting line defining the certificate can be copy-pasted into a PARI/GP session and checked
using

? primecertisvalid(c)

with expected result 1.

Alternatively, the argument -c checks the validity of the computed certificate; to see the result,
the option -v needs to be enabled.

The argument -f filename stores the computed certificate in a file of the given name in PARI/GP
format, and additionally in the file filename.primo in Primo (see [Primo], page 13) format (for
checking it with Primo, one needs to rename the file to filename.out). Additionally, it enables
checkpointing: During the first phase of ECPP (the downrun step determining cardinalities of
elliptic curves leading to a primality proof), the file filename.cert1 is written, during the second
ECPP phase of computing the elliptic curves by complex multiplication, the file filename.cert2
is written. Upon restart, the program picks up these files and continues where it has been
interrupted. After a successful run, these checkpointing files may be deleted.

Checkpointing is particularly useful with the MPI based parallel version of the binary, called
ecpp-mpi; this is created and installed alongside the sequential ecpp binary when the --enable-
mpi configure option is given.

Thus in a suitably set up MPI environment,

$ mpirun ecpp-mpi -g -n ’10^1000+453’ -c -f cert-1000

computes and checks an ECPP certificate for the first prime with 1001 digits and stores it into
the file cert-1000, while outputting debug information on screen.

By default, the code carries out a quick (as opposed to thorough) primality test, which is meant
to catch typos and obvious errors. If the number is trusted to be pseudoprime since this has
been tested independently, the command line switch -t can be added to drop this test.

The environment variable CM_ECPP_TMPDIR, if set in the shell from which the binary is invoked,
indicates a directory, available from all MPI processes for the parallel version, in which data
that is common over several invocations can be stored. The data is then computed on the
first run and read from disk during subsequent runs. If the environment variable is not set,
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the data is recomputed every time. This concerns files named cm_h.dat for class numbers and
cm_prim_xxxx.dat for primorials.

Setting this variable also causes checkpoint files named cm_factor_xxxxxxxxxxxxxxxx.dat to
be written to this directory; they are useful when certifying very large numbers, for which the
program execution may be interrupted during the second ECPP phase. They depend on the
number to be certified and can be deleted after the certificate creation.

It is possible to run only the first, downrun phase or only the second, CM phase of ECPP using
the command line options -1 or -2, respectively. Both require that a filename be given with the
-f option. Running only the first phase makes it possible to allocate a different (usually larger)
number of MPI processes to this phase. Running only the second phase is possible also when
the first phase has been completed only partially, so that the first elliptic curves, which often
take a very long time, can be obtained on fewer cores in parallel with the ongoing first phase.
Notice that in this case a certificate is written, but that it is considered invalid in particular by
the option -c. It can be completed by subsequent runs specifying -1, -2 or none of them.

4.4 ecpp-check

This is a small helper application to check the validity of ECPP certificates. It requires the -f

parameter followed by the name of a file containing a certificate in the PARI/GP format, as
created by the ecpp or ecpp-mpi binaries started with the -f parameter, or by PARI/GP with
the primecert command. The ECPP certificates of CM and PARI/GP may differ slightly: CM
creates points of prime orders on the elliptic curves, while the points created by PARI/GP have
prime order only after multiplication by the smooth cofactor. So every valid CM certificate is a
valid PARI/GP certificate, but not vice versa. The application checks both cases. It can also be
used to verify partial certificates, that is, prefixes of certificates, in which the downrun has been
stopped before the size of the number has dropped below 64 bits. This can be used to check
whether partial computations are correct.

Verification uses functions from PARI/GP, to provide for a way to check independently the
validity of certificates created by CM. The same internal machinery is used by the ecpp and
ecpp-mpi binaries invoked with the -c flag. PARI/GP multithreading is automatically taken
into account.
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