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Motivation

Accuracy and precision (Higham, 2002)

Accuracy

refers to the absolute or relative error of an approximate quantity.

Precision

is the accuracy with with the basic operations +, −, ∗, / are performed.
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Motivation

Usual implicit assumptions (possible interpretation)

1 All operations performed with the same precision

, unless stated
otherwise such as in a mixed precision context: (Wilkinson, 1963) (Section 1.2)

if it is necessary to work to higher precision, [. . . ] we may employ numbers
[. . . ] we shall refer to [. . . ] as multiple-precision

Not addressed in this talk.

2 No dedicated term for the accuracy with which the numbers are stored . . . as
if they were necessarily stored with the same accuracy as the precision:
precision interpreted as both the accuracy with which the basic operations are
performed and the numbers are stored: (Von Neumann, 1945) (Section 12.2)

the fact that a number requires 32 memory units makes it advisable to
subdivide the entire memory in this way [as] it simplifies the organization
of the entire memory

How about a variable accuracy storage independent from the hardware
(words in (Wilkinson, 1963) (Section 1.2)) constraints ?
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Motivation

Nothing very new

(Le Verrier, 1840) (contribution to the upcoming Neptune’s discovery in 1846)

Prediction of the existence of a novel planet as well as its location, before its
telescopic observation.
Concerns with numerical computing and significant digits:

the coefficients of the equation do not need [. . . ] to be computed with
the same approximation [and] one can know which degree of exactness it
is necessary to give [to each of them]
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Motivation

This talk

Solution of large sparse linear systems

We consider the solution of linear systems Ax = b, with A ∈ Rn×n a large and
sparse matrix.

Application to the compression of the Z basis in FGMRES (Saad, 1993)

Arnoldi-like equality at step k :

AZk = Vk+1H̄k , with V T
k+1Vk+1.

Variable accuracy storage through lossy compression techniques

(Calhoun et al., 2019; Di & Cappello, 2017; Lindstrom, 2014; Lindstrom &
Isenburg, 2006; Tao et al., 2017)
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Background (GMRES, flexible GMRES and inexact GMRES)

Generalized minimal residual algorithm (GMRES) (1/2)
(Paige et al., 2006; Saad & Schultz, 1986; Saad, 2003)

Krylov subspace methods remain among the most widely used methods to
solve this kind of system and GMRES with a right preconditioner M ∈ Rn×n

is often the go to method:

AM−1u = b and x = M−1u. (1)

Starting from an initial estimate x0 for x⋆, GMRES constructs a series of
approximations xk in Krylov subspaces of increasing size and with decreasing
residual norm. More specifically:

xk = argmin
x∈x0+Kk (A,r0)

∥b − Ax∥ ,

with r0 = b − Ax0 and

Kk(A, r0) = span{r0,Ar0, . . . ,Ak−1r0}

the k-dimensional Krylov subspace spanned by A and r0.
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Background (GMRES, flexible GMRES and inexact GMRES)

Generalized minimal residual algorithm (GMRES) (2/2)

In practice, a matrix Vk = [v1, . . . , vk ] ∈ Rn×k with orthonormal columns and
an upper Hessenberg matrix H̄k ∈ R(k+1)×k are iteratively constructed using
the Arnoldi procedure such that spanVk = Kk(A, r0) and

AVk = Vk+1H̄k , with V T
k+1Vk+1. (2)

This is often referred to as the Arnoldi relation. Consequently,
xk = x0 + Vkyk with

yk = argmin
y∈Rk

∥∥βe1 − H̄ky
∥∥ ,

where β = ∥r0∥ and e1 = (1, 0, . . . , 0)T ∈ Rk+1.
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Background (GMRES, flexible GMRES and inexact GMRES)

GMRES with right preconditioning algorithm

1: input: A, b, x0, maxit, ε, M.
2: r0 = b − Ax0, β = ∥r0∥ and v1 = r0/β
3: for k = 1, . . . , maxit do
4: z = M−1vk
5: w = Az
6: for i = 1, . . . , k do
7: H̄i,k = vT

i w
8: w = w − H̄i,kvi

9: H̄k+1,k = ∥w∥
10: vk+1 = w/H̄k+1,k
11: yk = argminy∈Rk

∥∥βe1 − H̄ky
∥∥

12: r̃k = βe1 − H̄kyk
13: if ∥r̃k∥ < ∥b∥ ε or k = maxit then
14: xk = x0 +M−1Vkyk
15: rk = b − Axk
16: if ∥rk∥ < ∥b∥ ε then
17: break
18: output: xk
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Background (GMRES, flexible GMRES and inexact GMRES)

Flexible GMRES (FGMRES) algorithm

1: input: A, b, x0, maxit, ε, M.
2: r0 = b − Ax0, β = ∥r0∥ and v1 = r0/β
3: for k = 1, . . . , maxit do
4: zk = M−1

k vk
5: w = Azk
6: for i = 1, . . . , k do
7: Hi,k = vT

i w
8: w = w − Hi,kvi

9: Hk+1,k = ∥w∥
10: vk+1 = w/Hk+1,k
11: yk = argminy∈Rk

∥∥βe1 − H̄ky
∥∥

12: r̃k = βe1 − H̄kyk
13: if ∥r̃k∥ < ∥b∥ ε or k = maxit then
14: xk = x0 + Zkyk
15: rk = b − Axk
16: if ∥rk∥ < ∥b∥ ε then
17: break
18: output: xk
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Background (GMRES, flexible GMRES and inexact GMRES)

FGMRES (Saad, 1993): remarks

Main advantage: Increased flexibility for the preconditioner, as now, for
example, an iterative method could be used as a preconditioner (Gazzola &
Landman, 2019; Giraud et al., 2010; Saad, 1993).
Main weakness: In contrast to GMRES, Zk now needs to be stored, because
otherwise calculating xk would require solving all the preconditioning systems
an additional time.
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Background (GMRES, flexible GMRES and inexact GMRES)

Inexact (matrix-vector product) GMRES (1/2)

Instead of calculating Av , it is actually calculated (A+ E )v , for some
perturbation matrix E ∈ Rn×n. This idea leads to what is referred to as
inexact Krylov subspace methods (Bouras & Frayssé, 2005; Giraud et al.,
2007; Simoncini & Szyld, 2003; Van Den Eshof & Sleijpen, 2004).
Again, the Arnoldi relation (2) no longer holds, but it can be shown that the
following Arnoldi-like relation holds:

AVk + [E1v1, . . . ,Ekvk ] = Vk+1H̄k . (3)

It turns out that the computed residual in each iteration is given by
r̃k = b − Ãkxk , where Ãk is a perturbed version of A and that

ÃkVk = Vk+1H̄k , with V T
k+1Vk+1.
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Background (GMRES, flexible GMRES and inexact GMRES)

Inexact (matrix-vector product) GMRES (2/2)

This means that the iterations xk are in fact members of different Krylov
subspaces, each spanned by a different matrix.
Furthermore, if the size of the perturbations ∥Ek∥ is bounded in each
iteration, it is shown in (Giraud et al., 2007) that the residual gap remains
small and that true residual will satisfy the stopping criterion:

Theorem 2.1

Choose 0 < ε and 0 < c < 1. Define εc = cε and εg = (1 − c)ε, and assume that
in every inexact GMRES iteration k

∥Ek∥ ≤ c

n
σmin(A)min

(
1,

∥b∥
∥r̃k−1∥

εg

)
. (4)

Then there exists an 0 < ℓ ≤ n such that ∥r̃ℓ∥ ≤ ∥b∥ εc and ∥rℓ∥ ≤ ∥b∥ ε.
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Background (GMRES, flexible GMRES and inexact GMRES)

Inexact right-preconditioning GMRES

In (Giraud et al., 2007) it was shown that:

Theorem 2.2

Choose 0 < ε and 0 < c < 1. Define εc = cε and εg = (1 − c)ε, and assume that
in every GMRES iteration k the right preconditioning system z = M−1vk is solved
with residual pk . If for all k

∥pk∥ ≤ c

n

1
K (AM−1)

min

(
1,

∥b∥
∥r̃k−1∥

εg

)
, (5)

then there exists an 0 < ℓ ≤ n such <that ∥r̃ℓ∥ ≤ ∥b∥ εc and∥∥b − AM−1uℓ
∥∥ ≤ ∥b∥ ε.

Proof.

See Giraud et al., 2007 (Theorem 5) for the full proof.
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Presentation agenda

1 Motivation

2 Background (GMRES, flexible GMRES and inexact GMRES)

3 FGMRES with inexact right-preconditioning

4 Compressed FGMRES (cFGMRES)

5 Practical compression strategies

6 Numerical experiments

7 Conclusion

Emmanuel Agullo FGMRES variable accuracy storage Multiprecision workshop 2024 17 / 34



FGMRES with inexact right-preconditioning

FGMRES with inexact right-preconditioning

Theorem 3.1

Choose 0 < ε and 0 < c < 1. Define εc = cε and εg = (1 − c)ε, and assume that
in every FGMRES iteration k the right preconditioning system zk = M−1vk is
solved with residual pk . If for all k

∥pk∥ ≤ c

n

1
K (AM−1)

min

(
1,

∥b∥
∥r̃k−1∥

εg

)
, (6)

then there exists an 0 < ℓ ≤ n such that ∥r̃ℓ∥ ∥b∥ εc and ∥rℓ∥ ≤ ε ∥b∥.
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Compressed FGMRES (cFGMRES)
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Compressed FGMRES (cFGMRES)

Core ideas

The vectors zk in FGMRES are the solutions of the preconditioning systems
and there are results on preconditioners with lower accuracy (Anzt et al.,
2019; Arioli & Duff, 2009; Carson & Higham, 2018; Higham et al., 2019).
Furthermore, since the zk can in theory be random – as long as Zk is of full
rank – FGMRES is likely less sensitive to small changes in these vectors.
In contrast to the mixed precision approaches, however, we will perform all
computations in double precision (64 bit), but store the zk in compressed
form after their calculation.
We note z̃k are the vectors containing the decompressed values corresponding
to the original zk .
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Compressed FGMRES (cFGMRES)

cFGMRES algorithm I

1: input: A, b, x0, maxit, ε, M.
2: r0 = b − Ax0, β = ∥r0∥ and v1 = r0/β
3: for k = 1, . . . , maxit do
4: zk = M−1

k vk
5: Compress zk.
6: Retrieve the decompressed vector z̃k.
7: w = Az̃k
8: for i = 1, . . . , k do
9: Hi,k = vT

i w
10: w = w − Hi,kvi

11: Hk+1,k = ∥w∥
12: vk+1 = w/Hk+1,k
13: yk = argminy∈Rk

∥∥βe1 − H̄ky
∥∥

14: r̃k = βe1 − H̄ky
15: if ∥r̃k∥ < ∥b∥ ε or k = maxit then
16: Retrieve the decompressed columns of Z̃k = [z̃1, . . . , z̃k ].
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Compressed FGMRES (cFGMRES)

cFGMRES algorithm II

17: xk = x0 + Z̃kyk
18: rk = b − Axk
19: if ∥rk∥ < ∥b∥ ε then
20: break
21: output: x
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Compressed FGMRES (cFGMRES)

Analysis (framework)

We write the decompressed values z̃k as a perturbed version of the original
values zk :

z̃k = (In + Fk) zk . (7)

Here, In,Fk ∈ Rn are the identity matrix and a perturbation matrix,
respectively. This means that

∥zk − z̃k∥
∥zk∥

≤ ζk , (8)

with ζk = ∥Fk∥ the maximum normwise relative compression error in iteration
k .
From a numerical point of view, the only assumption we will make on the
compressor is that ζk can be controlled by the user.
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Compressed FGMRES (cFGMRES)

Analysis (theorem and idea of the proof)

Theorem 4.1

Choose 0 < ε and 0 < c < 1. Define εc = cε and εg = (1 − c)ε, and assume that
in every cFGMRES iteration k the right preconditioning system
zk = M−1vk = A−1vk is solved with residual pk and that the maximum normwise
relative compression error is given by ηk > 0. If for all k

∥pk∥+ ζk ∥A∥ ∥zk∥ ≤ c

n
min

(
1,

∥b∥
∥r̃k−1∥

εg

)
(9)

then there exists an 0 < ℓ ≤ n such that ∥r̃ℓ∥ ∥b∥ εc and ∥rℓ∥ ≤ ε ∥b∥.

Proof.
We can interpret the compression as part of the preconditioning and write

z̃k = (I + Fk)M
−1 (vk − pk) .
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Practical compression strategies

Motivation

Bound (6) from Theorem 3.1 and bound (9) from Theorem 4.1 are both
based on results from the theory of inexact Krylov subspace methods,
specifically Theorem 2.1.
In the numerical studies performed in (Bouras & Frayssé, 2005; Simoncini &
Szyld, 2003; Van Den Eshof & Sleijpen, 2004) it is, however, shown that this
bound is often very restrictive and can be relaxed substantially in many
applications.
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Practical compression strategies

Strategies (quick overview)

Base strategy

Assuming FGMRES iterations without compression converge, we could ignore the
preconditioning error.

Relaxed & double relaxed strategies

Following (Bouras & Frayssé, 2005; Simoncini & Szyld, 2003; Van Den Eshof
& Sleijpen, 2004), we allow larger perturbations in the matrix vector product.
If the iterations converge, we also have that ∥r̃k−1∥ decreases to εg , so we
can relax this bound a second time (double relaxed)

Equal strategy

Theorem 4.1 suggests that it is the total perturbation from both the
preconditioner and the compression that should be bounded.

Cast 16 & 32 bit (mixed precision -like)
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Numerical experiments

Numerical set up of the compressor

SZ compressor (Di & Cappello, 2016; Liang, Di, Tao, Chen, & Cappello, 2018;
Liang, Di, Tao, Li, et al., 2018; Tao et al., 2017)

prediction based compressor: meaning that it will try to predict the value of a
data point based on the decompressed values of the adjacent data points
allows one to control the error between the original and decompressed data
used to compress and decompress z

normwise error (SZ interface:∥z − z̃∥ < χ)

Applied to base, relaxed, double relaxed and equal strategies with
χk = ζk ∥zk∥

pointwise error (SZ interface: maxi=1,...,n
|z[i ]−z̃[i ]|

|z[i ]| < χ)

Applied to cast32 and cast64 mixed precision -like strategies
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Numerical experiments

Total compression ratio ρ of Z

Each bar per strategy corresponds to a different matrix according to its id.
ρ = 2 and 4 represent the cast32 and cast16 respective (numerical) upper
bounds.
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Numerical experiments

Total memory ratio µ

µ = 1.33, 1.6 and 2 represent the cast32, cast16 and cFGMRES respective
(numerical) upper bounds.
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Conclusion

Conclusion

In a nutshell

FGMRES (this talk) (Agullo et al., 2020)
compression (the vectors) of the Z basis
achieving high(er) target accuracy (than accuracy of the storage)
use of (SZ) compressor
more in (Agullo et al., 2020).

Related work (not discussed today)

GMRES (Agullo et al., 2022)
compression of (the vectors) of the (V) basis
using either a compressor (SZ) or tensor compression (TT) [more in Martina
Iannacito’s thesis]
MGS (SZ and TT formats) Householder (only SZ case) variants
achieving low target precision (and reduce accuracy of the storage accordingly)

HPC design (not discussed today)

code: https://gitlab.inria.fr/composyx/composyx
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Conclusion

Perspectives

HPC out-of-core design
Combining mixed precision with variable accuracy storage
Study other compressors (ZFP, . . . )
GMRES

proving backward stability of GMRES with normwise arithmetic?
achieving high(er) precision (than accuracy of the storage)

Inexact GMRES framework
Related work (Gratton et al., 2022)

Application of variable accuracy storage schemes to other algorithms
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Matrices

Matrices (1/2)

label:matrices

name nnn nnz ||A|| iter ηbηbηb iter ηbηbηb
1 atmosmodd 1,270,432 8,814,880 1.92e+05 11 1.38e-11 11 1.38e-11
2 atmosmodj 1,270,432 8,814,880 1.92e+05 11 8.43e-11 11 8.43e-11
3 atmosmodl 1,489,752 10,319,760 6.20e+05 10 1.37e-11 10 1.37e-11
4 atmosmodm 1,489,752 10,319,760 6.39e+06 10 1.15e-11 10 1.15e-11
5 cage12 130,228 2,032,536 1.02e+00 8 3.46e-11 8 5.42e-12
6 cage13 445,315 7,479,343 1.02e+00 8 5.38e-11 8 3.07e-12
7 cage14 1,505,785 27,130,349 1.02e+00 8 5.28e-11 8 7.68e-12
8 cage15 5,154,859 99,199,551 1.02e+00 8 9.45e-11 8 6.46e-12
9 crashbasis 160,000 1,750,416 6.54e+02 10 3.15e-11 10 3.82e-11

10 dc1 116,835 766,396 5.70e+04 139 9.66e-11 11 2.12e-11
11 dc2 116,835 766,396 5.84e+04 89 8.80e-11 9 2.13e-11
12 dc3 116,835 766,396 6.25e+04 131 9.71e-11 31 1.28e-11
13 Goodwin_095 100,037 3,226,066 1.05e+00 245 9.72e-11 120 9.93e-11
14 Goodwin_127 178,437 5,778,545 1.05e+00 169 9.66e-11 159 9.83e-11
15 hcircuit 105,676 513,072 8.63e+01 215 9.58e-11 30 7.28e-11
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Matrices

Matrices (2/2)

name nnn nnz ||A|| iter ηbηbηb iter ηbηbηb
16 language 399,130 1,216,334 2.91e+01 9 3.40e-11 9 3.34e-11
17 majorbasis 160,000 1,750,416 1.45e+02 10 4.67e-11 10 2.36e-11
18 memchip 2,707,524 13,343,948 5.00e+02 68 8.18e-11 9 4.69e-11
19 ML_Laplace 377,002 27,582,698 2.92e+07 53 8.50e-11 20 4.38e-11
20 rajat31 4,690,002 20,316,253 1.25e+04 26 5.26e-11 17 6.19e-11
21 ss 1,652,680 34,753,577 6.54e+00 10 5.62e-11 28 9.28e-11
22 ss1 205,282 845,089 2.17e+00 7 2.74e-11 7 2.73e-11
23 stomach 213,360 3,021,648 2.21e+00 10 4.00e-11 10 2.73e-11
24 torso2 115,967 1,033,473 8.06e+00 10 2.60e-11 9 8.87e-11
25 trans5 116,835 749,800 1.13e+04 417 9.56e-11 11 1.20e-11
26 Transport 1,602,111 23,487,281 1.00e+00 34 7.55e-11 28 9.25e-11
27 vas_stokes_1M 1,090,664 34,767,207 8.85e+00 76 8.57e-11 72 7.93e-11
28 vas_stokes_2M 2,146,677 65,129,037 8.19e+00 72 5.77e-11 65 8.84e-11
29 xenon2 157,464 3,866,688 5.29e+28 22 7.87e-11 22 8.94e-11
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Practical compression strategies: details

Base strategy

As stated before, in practice it is observed that ∥pk∥ can be larger than what
Theorem 4.1 would suggest. Assuming that the FGMRES iterations without
compression converge, we could ignore the preconditioning error and only try
to bound the compression error using (9), i.e.,

ζk ≤ c

n ∥A∥ ∥zk∥
min

(
1,

∥b∥
∥r̃k−1∥

εg

)
In our numerical experiment we will take c = 0.9.
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Practical compression strategies: details

Relaxed & double relaxed strategies

The bound used in Theorem 2.1 can be written as

∥Ek∥ ≤ λk
1

∥r̃k−1∥
εg

In cite:bouras2005,simoncini2003,vandeneshof2004, it is shown that that
setting λk = 1, thus allowing larger perturbations in the matrix vector
product, does not negatively impact the convergence in many cases.
We will therefore do the same with the base compression strategy and relax
bound (9) to find

ζk ≤ 1
∥A∥ ∥zk∥ ∥r̃k−1∥

εg . (10)

If the iterations converge, we also have that ∥r̃k−1∥ decreases to εg , so we
can relax this bound a second time by replacing εg/ ∥r̃k−1∥ with 1:

ζk ≤ 1
∥A∥ ∥zk∥

. (11)

We will refer to strategy (10) and (11) as the relaxed and double relaxed
strategies, respectively.
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Practical compression strategies: details

Equal strategy

Assuming that the FGMRES iterations without compression converge, there
is a series of preconditioning errors ∥pk∥ which do not prevent the algorithm
from converging. Instead of using the upper bound from (9), we could relax
the base strategy by using ∥pk∥ as an upper bound for the maximum
normwise relative compression error in each iteration, i.e.,

ζk ∥zk∥ ∥A∥ ≤ ∥pk∥ ⇔ ζk ≤ ∥pk∥
∥zk∥ ∥A∥

.

Another way to interpret this strategy is to note that Theorem 4.1 suggests
that it is the total perturbation from both the preconditioner and the
compression that should be bounded. If the compression error in each
iteration is less then or equal to the preconditioning error, then

∥pk∥+ ηk ∥A∥ ∥zk | ≤ 2 ∥pk∥ ,

implying that the order of magnitude of the total perturbation has remained
equal to that of the FGMRES iterations without compression – which we
assumed converged.
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Practical compression strategies: details

Cast 16 & 32 bit (mixed precision -like)

Due to the large interest in mixed precision arithmetic we will also compare
the previous compression strategies with a mixed precision inspired approach:
storing the zk in either 16 bit or 32 bit precision.
We will, however, perform all calculations in 64 bit, and the decompression
step will therefore consist of casting the vector back to 64 bit.
Additionally, in order to limit over- and underflow errors when casting –
especially to 16 bit – we will normalize zk before casting it and store the norm
of the original data as well. After the vector is cast back to 64 bit we multiply
it with its original norm in order to retrieve the decompressed vector z̃k .
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Metrics (Z compression (ρ) and memory (µ) ratios)

Individual compression ratio (preliminary note)

Individual compression ratio ρk in iteration k

Ratio of saved storage for the zk stored as z̄k as

ρk =
mem(zk)
mem(z̄k)

=
mem(z)
mem(z̄k)

.

where:
·̄: compressed data object
mem(·): memory used by an object.

Remarks

Since mem(zk) is equal for all k , we will simply write mem(z).
Note that the memory used by z̄k can vary because the compression ratio
depends on zk itself and on the bound for the pointwise relative error – which
will vary in each iteration.
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Metrics (Z compression (ρ) and memory (µ) ratios)

Compression ratio (metric 1)

Compression ratio ρ of Z

If FGMRES needs ℓref iterations to converge and cFGMRES ℓ iterations then we
define the total compression ratio ρ associated with Zℓ = [z1, . . . , zℓ] as

ρ =

∑ℓref
k=1 mem(zk)∑ℓ
k=1 mem(z̄k)

=
ℓref · mem(z)∑ℓ

k=1
mem(z)
ρk

=
ℓref∑ℓ
k=1

1
ρk

. (12)

Remarks
The total compression ratio gives us an easy way to asses the overall
efficiency of the compression, taking into account the difference in the
number of iterations.
We might, for example, have a high compression ratio in each iteration, but if
we need many extra iterations to converge, we may eventually have ρ < 1.
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Metrics (Z compression (ρ) and memory (µ) ratios)

Memory ratio (metric 2)

Memory ratio µ

In order to estimate how much memory we gain with respect to FGMRES we also
define the total memory ratio µ that takes into account the storage required for
both the vk and the zk :

µ =

∑ℓref
k=1 mem(vk) + mem(zk)∑ℓ
k=1 mem(vk) + mem(z̄k)

=
ℓref · (mem(v) + mem(z))

ℓ · mem(v) +
∑ℓ

k=1 mem(z̃k)

=
2ℓref · mem(z)

ℓ · mem(z) +
∑ℓ

k=1
mem(z)
ρk

=
2ℓref

ℓ+
∑ℓ

k=1
1
ρk

.

(13)

Remark

Here we use the fact that mem(vk) = mem(v) = mem(z) for all k .
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Metrics (Z compression (ρ) and memory (µ) ratios)

Extra remarks

Obviously, higher individual compression ratios ρk in each iteration k will lead
to a higher total compression ratio ρ and total memory ratio µ. The latter
(the memory ratio µ) will, however, penalize extra iterations a lot more than
the former since it takes into account the fact that the extra vk need to be
stored as well – without compression. Note that we can write

µ (ρ) =
2ℓref ρ

ρℓ+ ℓref
⇒ lim

ρ→+∞
µ (ρ) = 2

ℓref
ℓ

.

While it is possible that ℓ ≤ ℓref , we observed in our numerical experiments
that the opposite is usually true. This implies that the total memory ratio is
bounded by 2, which is not surprising, since even with very high compression
rates cFGMRES still needs to store the vk .
When the compression is done by casting the zk to 16 bit and ℓ = ℓref , then
ρ = 4 and µ = 1.6.
Similarly, for casting to 32 bit we find ρ = 2 and µ = 4/3 = 1.33.
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