
Basic operations Current implementations New implementations in FLINT Prospects References

Assembly for medium precision arithmetic

Albin Ahlbäck

MPFR/MPC/MPFI/ARB Developers Meeting
Institut de Mathématiques de Bordeaux, 18 June 2024

Albin Ahlbäck
Assembly for medium precision arithmetic



Basic operations Current implementations New implementations in FLINT Prospects References

Basic operations

Current implementations

New implementations in FLINT

Prospects

Albin Ahlbäck
Assembly for medium precision arithmetic



Basic operations Current implementations New implementations in FLINT Prospects References

The most basic operations

The most basic operations for multiple-precision arithmetic:
Ï Addition and subtraction
Ï Left and right shift
Ï Schoolbook multiplication

For faster computer arithmetic, we can combine certain
operations such as add a to 2k ·b and store result in r .

Albin Ahlbäck
Assembly for medium precision arithmetic



Basic operations Current implementations New implementations in FLINT Prospects References

Other important basics

Ï Schoolbook squaring
Ï Low, mid and high schoolbook multiplication/squaring
Ï Granlund-Möller approximate reciprocal

⌊
β2n−1

d

⌋
−βn

(see [1])
Ï Division via approximate reciprocal [1]
Ï Greatest common divisor

Albin Ahlbäck
Assembly for medium precision arithmetic



Basic operations Current implementations New implementations in FLINT Prospects References

The GNU MP Library (GMP)

Provides fast implementations for basic multiple precision
arithmetic for many processor models.
Has:
Ï Extremely fast asymptotics for basecase algorithms [2]
Ï Well-written C and assembly code

Albin Ahlbäck
Assembly for medium precision arithmetic



Basic operations Current implementations New implementations in FLINT Prospects References

Fast Library for Number Theory (FLINT)

Has started to extend GMP’s low-level interface by
incorporating instruction set specific assembly code for 64-bit
ARM and 64-bit x86.
Ï Implementations of low and high multiplication exist.
Ï Tries to provide routines that outperforms GMP, with the

caveat that we do not care about binary size.

Albin Ahlbäck
Assembly for medium precision arithmetic



Basic operations Current implementations New implementations in FLINT Prospects References

GMP’s mpn-routines for Apple M1
GMP provides superior asymptotics for this model for many
routines:

Function Cycles per limb
mpn_add_n 1
mpn_sub_n 1
mpn_addlsh1_n 1
mpn_mul_1 1
mpn_addmul_1 5/4

The first four routines have optimal asymptotics.
mpn_addmul_1 has optimal asymptotic for how it is written.

Albin Ahlbäck
Assembly for medium precision arithmetic



Basic operations Current implementations New implementations in FLINT Prospects References

Dissecting mpn_addmul_1

GMP’s mpn_addmul_1 performs the operation

r ← r +a ·b0,

where r , a and b0 are non-negative integers and a <βn

and b <β. This is done via the basecase/schoolbook/naïve
algorithm.

Albin Ahlbäck
Assembly for medium precision arithmetic



Basic operations Current implementations New implementations in FLINT Prospects References

Overview of Apple M1’s Firestorm-unit

Dougall Johnson has done great research on Apple’s M1
architecture [3]. In the following slide, we will show a scheme
that gives a good oversight for possible lower bounds of the
number of cycles per limb for mpn_mul_1.

Albin Ahlbäck
Assembly for medium precision arithmetic



Basic operations Current implementations New implementations in FLINT Prospects References

Figure: Overview of Apple M1’s Firestorm-unit [3].

Albin Ahlbäck
Assembly for medium precision arithmetic



Basic operations Current implementations New implementations in FLINT Prospects References

GMP’s mpn_addmul_1 on Apple M1
L(top):

ldp a0, a1, [ap], #16 adds t0, r0, t0
ldp a2, a3, [ap], #16 adcs a0, r1, a0
ldp r0, r1, [rp] adcs a1, r2, a1
ldp r2, r3, [rp, #16] adcs a2, r3, a2

cinc a3, a3, cs
mul t0, a0, b0
umulh a0, a0, b0 adds t0, t0, CY
mul t1, a1, b0 adcs a0, a0, t1
umulh a1, a1, b0 adcs a1, a1, t2
mul t2, a2, b0 adcs a2, a2, t3
umulh a2, a2, b0 cinc CY, a3, cs
mul t3, a3, b0
umulh a3, a3, b0 stp t0, a0, [rp], #16

stp a1, a2, [rp], #16
sub n, n, #1
cbnz n, L(top)

Albin Ahlbäck
Assembly for medium precision arithmetic



Basic operations Current implementations New implementations in FLINT Prospects References

Notes
1. We want a full schedule for optimal performance.

2. Every instruction sequence forms a dependency chains.
3. Out-of-order execution and keeping check on dependency

chains is important.
4. Number of ports for vital instructions is important (in this

case, ports for mul and umulh).
5. Carry-chains has a lower bound of one clock cycle per

limb.
This list, however, is incomplete. Agner Fog provides a good
overview, specialized for recent x86 processors [4].

Albin Ahlbäck
Assembly for medium precision arithmetic



Basic operations Current implementations New implementations in FLINT Prospects References

Notes
1. We want a full schedule for optimal performance.
2. Every instruction sequence forms a dependency chains.

3. Out-of-order execution and keeping check on dependency
chains is important.

4. Number of ports for vital instructions is important (in this
case, ports for mul and umulh).

5. Carry-chains has a lower bound of one clock cycle per
limb.

This list, however, is incomplete. Agner Fog provides a good
overview, specialized for recent x86 processors [4].

Albin Ahlbäck
Assembly for medium precision arithmetic



Basic operations Current implementations New implementations in FLINT Prospects References

Notes
1. We want a full schedule for optimal performance.
2. Every instruction sequence forms a dependency chains.
3. Out-of-order execution and keeping check on dependency

chains is important.

4. Number of ports for vital instructions is important (in this
case, ports for mul and umulh).

5. Carry-chains has a lower bound of one clock cycle per
limb.

This list, however, is incomplete. Agner Fog provides a good
overview, specialized for recent x86 processors [4].

Albin Ahlbäck
Assembly for medium precision arithmetic



Basic operations Current implementations New implementations in FLINT Prospects References

Notes
1. We want a full schedule for optimal performance.
2. Every instruction sequence forms a dependency chains.
3. Out-of-order execution and keeping check on dependency

chains is important.
4. Number of ports for vital instructions is important (in this

case, ports for mul and umulh).

5. Carry-chains has a lower bound of one clock cycle per
limb.

This list, however, is incomplete. Agner Fog provides a good
overview, specialized for recent x86 processors [4].

Albin Ahlbäck
Assembly for medium precision arithmetic



Basic operations Current implementations New implementations in FLINT Prospects References

Notes
1. We want a full schedule for optimal performance.
2. Every instruction sequence forms a dependency chains.
3. Out-of-order execution and keeping check on dependency

chains is important.
4. Number of ports for vital instructions is important (in this

case, ports for mul and umulh).
5. Carry-chains has a lower bound of one clock cycle per

limb.
This list, however, is incomplete. Agner Fog provides a good
overview, specialized for recent x86 processors [4].

Albin Ahlbäck
Assembly for medium precision arithmetic



Basic operations Current implementations New implementations in FLINT Prospects References

However, mpn_mul and mpn_mul_basecase both has
overhead and more branches than wanted when doing small to
medium sized multiple precision arithmetic.

Albin Ahlbäck
Assembly for medium precision arithmetic



Basic operations Current implementations New implementations in FLINT Prospects References

New ARM schoolbook multiplication
implementation

Instead of GMP’s mpn_mul_1 + mpn_addmul_1 sequence
forming a schoolbook multiplication algorithm, we could
instead half-hardcode routines representing the action of

r ← a ·b,

where a ∈Z≥0 and b is an n-limbed whole number for some
fix n.

Albin Ahlbäck
Assembly for medium precision arithmetic



Basic operations Current implementations New implementations in FLINT Prospects References

mpn_mul/flint_mpn_mul on Apple M1
m/n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 4.69
2 4.64 3.60
3 4.00 2.96 2.67
4 2.85 2.35 2.20 2.08
5 3.01 2.14 1.91 1.96 1.93
6 2.58 1.91 2.28 1.92 2.04 1.97
7 2.31 1.72 1.89 1.62 1.76 1.78 1.80
8 2.21 1.70 1.53 1.51 1.66 1.70 1.77 1.78
9 1.94 1.62 1.57 1.57 1.58 1.64 1.65 1.69 1.77
10 1.82 1.49 1.49 1.47 1.47 1.58 1.56 1.67 1.72 1.74
11 1.75 1.43 1.41 1.45 1.42 1.47 1.47 1.53 1.56 1.52 1.55
12 1.64 1.35 1.36 1.44 1.46 1.55 1.66 1.76 1.64 1.59 1.58 1.57
13 1.60 1.32 1.34 1.34 1.43 1.46 1.51 1.47 1.45 1.46 1.48 1.51 1.54
14 1.53 1.25 1.30 1.29 1.34 1.40 1.40 1.39 1.39 1.39 1.49 1.47 1.46 1.49
15 1.52 1.30 1.30 1.30 1.34 1.36 1.32 1.34 1.34 1.35 1.34 1.35 1.36 1.36 1.36

Albin Ahlbäck
Assembly for medium precision arithmetic



Basic operations Current implementations New implementations in FLINT Prospects References

Some notes on this result:
1. GMP does not provide a native mpn_mul_basecase for

ARM, only native mpn_mul_1 and mpn_addmul_1.
2. We only implement routines for n < 16.
3. Using this implementation with Karatsuba (O(n1.58)), we

outperform GMP until n ≈ 483 on Apple M1. For
reference, GMP starts using Toom-Cook 6.5 (O(n1.39))
at n = 446 on Apple M1.

Albin Ahlbäck
Assembly for medium precision arithmetic



Basic operations Current implementations New implementations in FLINT Prospects References

New x86 schoolbook multiplication implementation

While ARM enjoys having a three-argumented instructions,
x86 does not have this luxury. Because of this, one of the
most viable options to outperforming GMP is to fully hardcode
every case schoolbook multiplication.

Albin Ahlbäck
Assembly for medium precision arithmetic



Basic operations Current implementations New implementations in FLINT Prospects References

mpn_mul/flint_mpn_mul on Intel Skylake
m/n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 3.20
2 3.41 2.50
3 4.17 3.00 2.72
4 3.72 2.25 2.53 2.15
5 2.91 2.02 1.94 1.85 1.84
6 2.43 1.86 1.74 1.60 1.57 1.54
7 2.20 1.82 1.63 1.55 1.54 1.55 1.51
8 2.01 1.78 1.64 1.56 1.55 1.53 1.54 1.50
9 1.89 1.80 1.64 1.60 1.71 1.78 1.69 1.75 1.55
10 1.90 1.79 1.61 1.62 1.75 1.78 1.71 1.75 1.53 1.44
11 1.89 1.83 1.63 1.67 1.78 1.83 1.78 1.76 1.57 1.47 1.38
12 1.83 1.74 1.61 1.67 1.78 1.83 1.74 1.78 1.56 1.45 1.40 1.32
13 1.79 1.64 1.60 1.64 1.77 1.84 1.77 1.81 1.59 1.49 1.41 1.35 1.32
14 1.85 1.58 1.53 1.62 1.74 1.83 1.75 1.80 1.58 1.45 1.39 1.36 1.31 1.26
15 1.86 1.57 1.54 1.61 1.74 1.83 1.76 1.78 1.60 1.47 1.40 1.34 1.31 1.27 1.42
16 1.85 1.58 1.55 1.65 1.79 1.85 1.76 1.81 1.61 1.49 1.40 1.34 1.29 1.26 1.29 1.35

Albin Ahlbäck
Assembly for medium precision arithmetic



Basic operations Current implementations New implementations in FLINT Prospects References

Some notes on this result:
1. We still perform significantly better than GMP, even

when it has a native mpn_mul_basecase.
2. We implement for n ≤m ≤ 16.
3. Karatsuba with this implementation performs better than

GMP up until n ≈ 230 on Zen 3. On Zen 3, GMP starts
using Toom-Cook 4 (O(n1.40)) when n > 130.

Albin Ahlbäck
Assembly for medium precision arithmetic



Basic operations Current implementations New implementations in FLINT Prospects References

Prospects

Ï Implement more (half-)hardcoded assembly routines.

Perhaps use AI + superoptimizer to automate the
process?

Ï Think of more powerful routines that could be more
performant in assembly versions. With more limbs:
approximate reciprocals, division via approximate
reciprocals, GCD?

Albin Ahlbäck
Assembly for medium precision arithmetic



Basic operations Current implementations New implementations in FLINT Prospects References

Prospects

Ï Implement more (half-)hardcoded assembly routines.
Perhaps use AI + superoptimizer to automate the
process?

Ï Think of more powerful routines that could be more
performant in assembly versions. With more limbs:
approximate reciprocals, division via approximate
reciprocals, GCD?

Albin Ahlbäck
Assembly for medium precision arithmetic



Basic operations Current implementations New implementations in FLINT Prospects References

Prospects

Ï Implement more (half-)hardcoded assembly routines.
Perhaps use AI + superoptimizer to automate the
process?

Ï Think of more powerful routines that could be more
performant in assembly versions. With more limbs:
approximate reciprocals, division via approximate
reciprocals, GCD?

Albin Ahlbäck
Assembly for medium precision arithmetic



Basic operations Current implementations New implementations in FLINT Prospects References

I want to thank Andreas Enge and Fredrik Johansson for
inviting me here, and also thank Andreas again for organizing
this.
And thanks to Adélie Linux at cfarm for letting me
benchmark on their Apple M1.

Albin Ahlbäck
Assembly for medium precision arithmetic



Basic operations Current implementations New implementations in FLINT Prospects References

[1] Niels Möller and Torbjörn Granlund. “Improved Division by
Invariant Integers”. In: IEEE Transactions on Computers 60.2
(2011), pp. 165–175. DOI: 10.1109/TC.2010.143.

[2] Torbjörn Granlund. GMP assembly chart. URL:
https://gmplib.org/devel/asm (visited on 06/15/2024).

[3] Dougall Johnson. Firestorm Overview. URL:
https://dougallj.github.io/applecpu/firestorm.html
(visited on 06/16/2024).

[4] Agner Fog. Optimizing subroutines in assembly language. 2023.
URL:
https://agner.org/optimize/optimizing_assembly.pdf
(visited on 06/16/2024).

Albin Ahlbäck
Assembly for medium precision arithmetic

https://doi.org/10.1109/TC.2010.143
https://gmplib.org/devel/asm
https://dougallj.github.io/applecpu/firestorm.html
https://agner.org/optimize/optimizing_assembly.pdf

	Basic operations
	Current implementations
	New implementations in FLINT
	Prospects
	References

