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Dagstuhl 2018: New number type to implement

Complex ball arithmetic

Used internally to replace hand calculations of error bounds
As a tool to implement Taylor and Laurent series

As a building block for polynomials, class polynomials, etc.
Only four basic arithmetic operations and square root?
Need for real ball arithmetic? interface with MPFI?

Representation as rectangles? as balls?
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Dagstuhl 2018: New number type to implement

Complex ball arithmetic

Used internally to replace hand calculations of error bounds
As a tool to implement Taylor and Laurent series

As a building block for polynomials, class polynomials, etc.
Only four basic arithmetic operations and square root?
Need for real ball arithmetic? interface with MPFI?

Representation as rectangles? as balls?

Release 1.3.0 “Ipomoea batatas”, December 2022:
o Ball arithmetic (marked experimental)
@ New function mpc_agm

@ New function mpc_eta_fund
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Algorithm for AGM
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Algorithm for AGM

o have y = o(1/2 4 2/2).
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Figure 1: Extremal (from above) values of ay (solid curve) and by (dotted curve) after
the first ieration of the AGM for () > 0. The values are bounded from below by the
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The idea of the analysis.  Let us first give the basic iden of the folowing, rather tech
cal analysis. Assume a target precision of N bits that s, a target relative error of about
2%, 1 g and by are of the same order of magnitude, the AGM iteration converges
aquadratically, that is, the mumber of corret digits doubles i each step, and we need
about logy V teations. Unortunatel, when ag e by ave of diffrent onders of mi
nitude, we bave slower converzence. To illustrate this, consider ag = 1 and by

we need to increase.the

munbes of eraions by 9ughly log of he abmlute vl of he exponent of o/
e prcie bound 5 (N, i, ) on the b of terations i ivn i (3). Mareove
e /) < 0 b o of vy dilen cxporets i by et
one et ongh i e o
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computation of i
compute the sequences

bove, For 1 > 2, we

a = o(@ns)
= o(VA)
Thon one s by iduction that 75 i i he some quadrant a7 a5 o, for
thatmatter, oy nd )
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Let ry = (VB! ~ 1)y fo some iteger y such hat an, fr < 127, Wo may
w7y = (VI with by s in (24), 50 hat o € (4VZ)"* 4141 Wo s show by induction
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Algorithm for AGM

that 8, € 12177 if the mumber n of iterations i not 100 large compared fo the AGM sequences () and (¥, computed (with infinie precision) frou af = 1 and by
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Algorithm for AGM

The above bound B for the required number of fterations 1 grows with [log, <], so and we already know

problemmatic sicuations may occur whea |2 s cither very large or very suwal; the fortuer ol < Lo [y < 1
may happen when bo| is large and/or fa| is small, the latter when [fp| is small and for o ot seneral st e
a5 large. Remember hat in our setting we have the bounds E seneral sotting and

Jal > @l VE

ol < 1,50 that fon| = |2 <

by (30), whence

thus interestin situations can oceur only when cither (B is small o [as| is swall, that :
5,y s close to 15 and both cannot happen simltancously. This leads to the folowing
case distinetion:

L2 g ] < og i+ 5

Using the estimate
(a) Assume Exp(R(), Exp(3(0)) < -1
By (31) thisis cquivalent to Exp(R(b). Exp(3(hu))
1/2 and

s (1), 1301

1, whence Rit). 3(00)
and (32) we finally abtain

bl < ¥

Tog <[] < - max (Exp(R(ai)), Exp(3 ()

9

This implics

13+ Y it s < <1

/ (0 I the st cue, s e ave 2ot i (), t st o of Exp (R(5)
— Exp (3(50)), or equivalently by (31) at least one of Exp(R(h)) and Exp(3(hy))

obtain for

/ot )
) 1 (R 190 ] 1t

<8 and [log,

ol < max oy

1 Exp (S()) > 0. then Exp(S(a)) = ~1 by (32) and
Using the etimate
N _ R forl > )| > 174,
[ 5 ma (G 3 > 27 o) i
Otherwise sinee weare ot i (1), Exp(R(@)) > L or [R(#1)| > 1/4; o t s kaown
o be positive in fact R(d1) > 1/4. In preciion at least 5, the value 1/4-31/32
s reprcsentable and smallr tha 1/4 %0 it the valne rounded to R() satisfes
(14 R(l))/2 > 31/128 and R(ly) Tn precision at least , the vale
iorn bl sl than 53/64 30 that. the o vae
satises R(bn) > “whic mplies R{ay) > 15/64 > 1/5 and

we finally abtain

e (Bsp(R). Exp(3(@) + ) 9

(b) Asnme Exp(3() < 1 and Exp((ai)

By (32) th ft condiion implie Exp(3(a) < e ol > P > 1/
ek conditio b it th Gt ety of ropositin 3 il ik

Exp (14 R(0)/2) < 2.0 1 R()| < /2. S0 ot 1 < %) < 112
and then 1 < Rit) < ~1/2 3 well. Tt it ol 0 < () < 1/

We o know [ar] < 1in our general setting. Altogether

21 < 8 and | logy 2] < 3. )

Putting these together, we obtain

R < ol or 1/VE < [V, and fon < VE/4
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Algorithm for AGM

etting L(i, ) denote the above bound on [log, <[] depending on the exponents
occurring in by and i, and connting the additional first iteration to compute &, and

1, ot prsent. i the above analysis, e fx  manber of erations 1 sich that 1 >
BN, by i) with

B, ) = o (o L)) Mo 0140 ()

Then
= (14 02) AGMI1, ) with ] € 2-¥47)

“otal error and working precision. Corbinin with (29, we obtain for » sficcutly
lrse preision sl man eraons n hat AGNI1 ) = 125 i,
with o] €2 and 102] <
1211+

=100l

-

i)

So afer n = B(N. o, 1) steps of the AGM iteration at a working precision
ofp > N+ > 2w ohtin , which approvimates AGM(1, o) with
elative rror botnded by 7-2-¢

Finally, we let =~ AGM(a,b) = a AGM(1, ) and % = o{a
sl By (10) i roosion 1, wins o & > 2 > iy B 1) >
Tand p> N 48 3 10, this lends 1o  relaive eror bounded by 2

where a s known ex-

Summary. In our analyss, the working precision p depends on

&

mas(3, ~2 Exp(R(di)) ~2)
of (24). which in turn depends not only on the input data, but also on the working
precision of the first AGM iteration. It is not enovgh to carry out this computation at
arbitrarily low precision: Since ly is computed as /b or b/a depending on the respes-
tive sizes of the mbers and it is rounded, the computation of R(a) requires double
rounding, which may even lead to o wrong exponent if the precision i too low. Precisely
the exponent of R() may only be wtong if R(ly) is so close to 1 that it is rounded
towards zero to 1 plus 1 ulp, that &, R(lp) = —(1 - 2°7). Then R(ay) = 27" with
p his lost all information on R(t) and relects oy the rounding error
I all ther cases  significant digt is etained and the expoent is orrect. So k, may be
computed by increasing the precision for this precomputation ntil Exp(R(d)) > —p.

Then we i deed ceumey N (ot targetprecin s ity msein)
compute Lt )by (5, () o (05) i the b of o n = B b )
o 3 oo e sk A S el o a1 235 Then the o
precision is given

N may be translated

sing Proposiions 0 d 7, the compes e eror of
o i ulp, Wil F = % 4 6 the computed appecxmation of
AG (0.8, et k= mast (Ep(7)~ Exp()-+1,0)+ 1, aod ky = mas(Exp(z) — Exp(7) +
1,0)+ 1. Then we have error(F) < Mulp(7) and enor(7) < 247 ¥ulp(3).

I practice, one should take this additional loss into account. 1f rounding fils after
the fisst computation, nevertheles the values of ky and k; will most likely ot chiy
with a lorger precision. So one should let &' = max(kn, k). replace N by N + K and
adapt the number of fterations and the working precision accordingly

il fix the result.

4 Complex ball arithmetic

We propose a simple implementation of complex balls, which keep track of rounding
errors over seversl operations. The originality of our implementation is that it uses
complex relative exrors as in §1.1.4. A complex ball of type speb._t s defined by a nor-
=pe_t and & relative sadivs ¢ of type sper_t, an it represents all
(1-0) with 9] < r, or equivalently the closed circle with centre ¢

zero centre ¢ of type.
complex numbers
and adis rel. T the following, we wse the votation (c,r) fo this complx ball.

point value with  signed G4 b intoger mantissa o, normalised to 31 bits, o that two
mantissas may be multiplied withon rounding. The Sgn is used to encode r = 00, 22t
mantissa encodes 0, otherwise & mantissa is abways positive. The exponent. i encodesd
s a 64 it intoger ¢ such that (for fnite redil) ¥ = m -2 with 0 < m < 2" In most
applications a radis v > 1 will b meaningless, o that in practice we wil almost abnys

have e < =31, or 7 = .

Mathematical fuetions are then wnderstood to work on sets and to “round up”:
Thoy roturn a complex ball containing the set obtained by applying the function to
exery combination of arguments from the input balls, Reasonable efforts are made to
return sl balls, but there s 1o guarantee that the returned ball is minimal

I any case, the centre of the resulting ball s abtainee by applying the corresponding
MPC function on the contres of the input balls with ronnding to nearest. The analyses
of §3 then provide upper bounds on the radis

‘Compared to a represetation decomposed along the real and imaginary pats, with
scparate relative or absolute errors, which leads to rectangles instead of circles, our
representation simplifies multiplicative operations and makes additive operations more
complicated. Determining branch cuts, which often depend on the decomposition of a
complex munber into real and imaginary parts, are probably also made more compl-
eated. The biggest dravback is that intervals centrod in 0 may not be represented at ol
More generally,intervals containing 0 are also not meaningful: They correspond to balls

W
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Algorithm for AGM using ball arithmetic

with > 1, which means that even the most significant digt of the centre is uncertain

41 Crossing the axes

7

To correctly evaluate functions at branch cnts, it may be useful to examine how
comples bl are postono wilh spet (0 the . As oy menioned abe
ball (e, 7) contains the origin if and only if >
For ¢ = 2+ iy, it cromes (or touches) the real axis if and only if i contains the
point 7, which means that
e =l < rlel e o] < vl 45 7 <12 (a2 +47) & (1= A)‘,—'Uul

‘When does a complex ball tonch the real axis? This means that (1 r2)y# = 222, which
and 0,50 that the ball is o point ocated o the ral
S0 that the ball i centred on the maginary asis and
atable

hiappens obviously when
vkt on w7 = 1ol £ = 0,
tonches the origin. Al other cases aze actually impossible with machine-represer
mbers. Asstming otherise, recall that ,  and r are rtional numbers with denamitor
a power of 2. 1 is an integer, then it i cither 1, which we already covered: o laxger, and
e theorgin s contained i he teriorof the bl which it cross e el s, So

(1) = (2

et 1 = /2" with o an odd integer and 1 > 1. Then
i the sare ofan odd . Bt s odd uaree v 1 ol 4, whereasthe - hand
side i 3 modulo 4, a contradiction,

smmetsically, the complex ball (2 + iy,r) erosses (or touches) the imaginary axis it

and only

(1-r) 2 < P2y

I touches the imaginary s if and anly i r = 0 and & = 0, 50 that the bll i a point
o that the ball s centred on the real s

on the imaginary axis; or 7 =
and touches the origi.
“The ball has a common point with the negative real axis (including the origin) if and

0 aind tho ball has a common point with the zeal axis (since then

anly if cither 2
such a common point]; or > 0 and the ball contains the orign.
42 mpe_agn

Tmplementing

the AGM (see §3.10) for complex balls would require to chock whether
the input crosses the negative real axis, where we have placed the branch cut (which is

@

inberited from the branch cut of the comple square oot). However if che npu i a
complex musber, which ean bo consdered o bo wact, thet an uplecatation usog
Compl el i o . ol sl A gy el ol
compared 1o §3.10,

o fis step,assumin tha [ >
scound By,

1'3(0) = 0. them the angle betwoen a e i 0 or 7. Regardless of ho rounding
direction, R(by) also has the same sign as R(by). If R(by) > 0, then the angle is 0 and
the computation can be ontsourced 10 a real AG s deseribed n 5310, 1 Ri(i) <
0, then the angle is 7, an the complox ball contaning by cxvses the negatie sl
i o et wep of the AGM with an implementation of mpeb_sart tht respects
the branch cut would end up with o bal contining /Tl ¢ an hus the origin
which i completly vsees. We may, however, i this case use an mplementation of
the sqare oot plcing the branch et diferetly and seurning n bl cented ot e
soprsmaton o T e ot it e AGH e

o ot o bl anod , o o i s 5
i wa 04 o

bl e compute by = b/a a5 a complex ball centred

and ) e e ey o
= 0 w0
By {6, 7] we e | AGN(1. )
snd b, nto this nequality vields
A
The lowe triangle incquality gives
|AGM(L, ) ~ (140

o — bul. Plugging the expressions for a,

ol + [0ain] + [ D4l

101, b0) — (1 + ) < [ —

71> | AGM(L ) = @l = 0] -

and putting these inequalities together we obtain

el m) [+ 4] ]

o) and 1 = [9a; then we obtain

#2004 (Lt 7)) € (2Aran ) 4 7)) i < 1

JAGM(1,h) — @] < (

Wiite

AGM(Lb) — @] < (ra

Otheryie i, AGM(L ) i contins i the bl (1 20 ). o

i ith the bl (o, 0) . abtai & bl contanin AGAT (o8 151t o b s t

i MPC mumbe it the desired ounding e, e e hve coety computed

e we need 10 tepeat the computations st a higher precision, and the
ary precision increase.

c.aga; other
exponcut of the radius gives an indication on the nocess

In prectice comvergence of the sequences of @, and b, is often such that
Othersise the two generally differ by only 1 ulp, and a very coarse

and ths
estimate of oy s a power of 2

s < (R B9

is enngh, where Bxpl(0) is considered as o0

2
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Complex balls

Centre and radius as relative error
(c,r) = {zeC:|z—c <rlc}
= {z=c1+9): |9 <r}
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Complex balls

Centre and radius as relative error
(c,r) = {zeC:|z—c <rlc}
= {z=c1+9): |9 <r}

Scaling is easy
s(c,r) C (sc,r) forse R

Multiplication is easy
(c1,n) + (c2,r2) C (cico,ri + r2a+ i)

@ Square root is easy
Vien € (Ver/2)

@ Addition is more difficult

(c1,n)+ (c2,r2) C (c1 + ¢, (|ar|n + |e2|r2)/|c1 + c2)

. ’ 0 is not representable. ‘

] Andreas Enge Ball arithmetic in MPC Bordeaux 2024 9



Complex balls in C

typedef struct {
mpc_t c;
mpcr_t r;

} mpcb_t;

] Andreas Enge Ball arithmetic in MPC Bordeaux 2024 10



Complex balls in C

typedef struct {

mpc_t c;
mpcr_t r;
} mpcb_t;

typedef struct {
int64_t mant;
int64_t exp;
} mpcr_t;

] Andreas Enge Ball arithmetic in MPC Bordeaux 2024 10



Complex balls in C

typedef struct {

mpc_t c;
mpcr_t r;
} mpcb_t;

typedef struct {
int64_t mant;
int64_t exp;
} mpcr_t;

@ radius 0: mant =0
@ radius co: mant < 0
@ 31 bit normalised mantissa: 230 < mant < 23!

p
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Functions on radii

Surprisingly many and quirky functions...
Results are normalised and rounded up (unless exception).
o Predicates
» mpcr_inf _p
> mpCr_zero_p
» mpcr_lt_half p
> mpcr_cmp
@ Setters
» mpcr_set_inf
> mpcr_set_zero
» mpcr_set_one
> mpcr_set
» mpcr_set_uib4_2si64
> mpcCr_max
o Output
> mpcr_out_str

-

p
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Functions on radii

@ Arithmetic
» mpcr_add, mpcr_mul, ..
» mpcr_sub_rnd
Takes MPFR_RNDU, MPFR_RNDD.
» mpcr_c_abs_rnd
Used for error of addition

(c1,n) + (c2, ) C (a1 + 2, (|ci|n + |e2|r2) /|c1 + c2])

- Andreas Enge
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Functions on radii

@ Arithmetic
» mpcr_add, mpcr_mul, ..
» mpcr_sub_rnd
Takes MPFR_RNDU, MPFR_RNDD.
» mpcr_c_abs_rnd
Used for error of addition

(c1,n) +(c2, ) C (1 + e, (la|r + |c2lr)/|c1 + c2l)

» mpcr_add_rounding_error (r, p, rnd)
Accounts for shift of centre by 1/2 ulp or 1 ulp depending on rnd.
Adds (1 + r)27P or twice this to r.
Called once at the end of each operation.

p
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Principles of complex balls

@ (ci,n)o (e, r) C(caoc,r)
@ One precision for real and imaginary part
o Initialised without precision: mpcb_init (z), mpcb_clear (z)
@ Precisions are tracked automatically.
> ) 0 Zp gets minimum precision of z; and z.
» Precision is not decreased when radius increases.
Creia—
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Setting complex balls

@ mpcb_set_inf (z)
e mpcb_set (z, z1)

Challenges: Exact input and inputs with errors.
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Setting complex balls

@ mpcb_set_inf (z)
@ mpcb_set (z, z1)
Challenges: Exact input and inputs with errors.
@ mpcb_set_ui_ui (z, re, im, prec)
Uses maximum of prec and sizeof (ulong).
@ mpcb_set_c (z, c, prec, err_re, err_im)
Assumes c has err_re and err_im half-ulp errors.

> If prec large and err_re and err_im = 0: exact, r= 0.
» Otherwise, r encodes err_re, err_im and rounding of c.
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Computations with complex balls

mpcb_neg (z, zl)
mpcb_add (z, zl, z2)
mpcb_mul (z, zl, z2)
mpcb_sqr (z, zl, z2)
mpcb_pow_ui (z, z1, e)
mpcb_sqrt (z, z1)
mpcb_div (z, zl, z2)

mpcb_div_2ui (z, zl, e)
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Rounding complex balls

@ mpcb_round (c, z, rnd)
Rounds the centre of z to ¢ (with its own precision).
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Rounding complex balls

@ mpcb_round (c, z, rnd)
Rounds the centre of z to ¢ (with its own precision).

@ mpcb_can_round (z, prec_re, prec_im, rnd)
true
if rounding any complex (mathematical) number in z to

a complex (floating point) number of precision (prec_re, prec_im)
in direction rnd

yields the same result and ternary return value.
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Rounding complex balls

@ mpcb_round (c, z, rnd)
Rounds the centre of z to ¢ (with its own precision).

@ mpcb_can_round (z, prec_re, prec_im, rnd)
true
if rounding any complex (mathematical) number in z to

a complex (floating point) number of precision (prec_re, prec_im)
in direction rnd

yields the same result and ternary return value.
@ Beware of infinite loops for exact results.

p
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“Normal” functions using balls

@ mpc_agm
Uses a priori error analysis.
Tests compare with mpc_mpcb_agm.
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“Normal” functions using balls

@ mpc_agm
Uses a priori error analysis.
Tests compare with mpc_mpcb_agm.

@ mpc_eta_fund (rop, z, rnd)

gt/ = exp(2miz/24)
24
g = (q1/24)
o= ¢/ (1—q-F+d+q —q2—g®+-)

q'/?* is computed as mpc with an a priori error analysis,
then handled with mpcb_set_c.
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What is next?

@ Question the design choices.
@ Handle 07

» Exact 0 is easily encoded, but needs case distinctions.
» Balls around 0 need absolute radius encoding
and more case distinctions.

Use balls internally for series (special values of special functions)?

Use balls in existing functions instead of error analysis?

Implement functions on balls?
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