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Dagstuhl 2018: New number type to implement

Complex ball arithmetic
Used internally to replace hand calculations of error bounds
As a tool to implement Taylor and Laurent series
As a building block for polynomials, class polynomials, etc.
Only four basic arithmetic operations and square root?
Need for real ball arithmetic? interface with Mpfi?
Representation as rectangles? as balls?

Release 1.3.0 “Ipomoea batatas”, December 2022:
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Algorithm for AGM

If any of x1, y1, x2 or y2 equals 0, then the algorithm has either finished in the second
step, or the corresponding norm is computed exactly already at precision 2p < p′, a
contradiction. So the case of interest is that these four input values are non-zero. Then
write zk = 2ek(x′k + i2dky′k) with integers x′k and y′k satisfying 2p−1 ⩽ x′k, y

′
k < 2p,

and furthermore dk ⩾ 0 since yk ⩾ xk. We have nk = 22ek ◦(mk) with the integer mk =
(x′k)

2+22dk(y′k)
2. If any of the exponent differences satisfies dk ⩽ p, then mk < 24p ⩽ 2p

′
,

and nk is computed exactly at precision p′, a contradiction.
So d1, d2 > p. The integer mk, read from the lowest to the most significant bits,

consists of (x′k)
2 encoded with 2p bits (with potentially a leading bit 0), followed by

2dk− 2p ⩾ 2 bits 0, followed by (y′k)
2 encoded with 2p bits (with potentially one leading

bit 0). So the 2p most significant bits of mk, excluding leading bits 0, have the following
shape: If y′k >

√
2 · 2p−1, they encode exactly (y′k)

2. If y′k <
√
2 · 2p−1, the 2p− 1 leading

bits encode (y′k)
2, and they are followed by a digit 0, so the 2p leading bits encode 2(y′k)

2.
Since n1 = n2, in particular their leading 2p bits coincide; so either (y′1)

2 = (y′2)
2,

(y′1)
2 = 2(y′2)

2 or 2(y′1)
2 = (y′2)

2, where the last two cases are impossible for integers.
Comparing exponents of the nk yields e1+d1 = e2+d2, so y1 = y2, a contradiction since
the algorithm has proceeded beyond the second step. ■

3.10 mpc_agm
ssec:agm

Definition. Let a, b be non-zero complex numbers. Define sequences of arithmetic
means (an) and geometric means (bn) by a0 = a, b0 = b, an+1 = an+bn

2 and bn+1 =√
anbn. At each step, there is a choice of sign for the square root. If an and bn form an

(unoriented) angle different from 0 and π, then they define a two-dimensional pointed
cone in the complex plane. Notice that an+1 lies in this cone. Following [4] we call right
the choice that makes also bn+1 lie in the cone, and following [5] we call the resulting
sequences optimal. (An equivalent definition is that |an+1−bn+1| < |an+1+bn+1|.) There
is a common limit of the sequences, the arithmetic-geometric mean AGM(a, b).

It is immediate that AGM is symmetric, that is, AGM(a, b) = AGM(b, a), and ho-
mogeneous, that is, AGM(λa, λb) = λAGM(a, b) for any non-zero complex number λ.

So we may assume that |a| ⩾ |b|, and AGM(a, b) = aAGM(a0, b0) with a0 = 1,
b0 = b/a, |b0| ⩽ 1.

We need to examine the corner cases. If one or both of a and b are zero, all geometric
means are zero, and AGM(a, b) = 0. If the angle between a and b is 0, then b0 is a positive
real number, and AGM(1, b0) may be computed with mpfr. If the angle between a and b
is π, then b0 is in [−1, 0). The arithmetic mean of 1 and −1 is zero, so AGM(1,−1) = 0.
If b0 > −1, we take the first geometric mean with a positive imaginary part, so that also
ℑ(AGM(1, b0)) will be positive. Notice that ℑ(AGM(1, b0)) has the same sign as ℑ(b0)
unless b0 is real, so this choice determines our branch cut for AGM.

So in the following, we analyse the computation of AGM(1, b̃0) with b̃0 = ◦(b0) for b0
in the unit disk centered at the origin (except −1 and 1), where the real and imaginary

parts of b̃0 are rounded towards 0, which ensures
∣∣∣ℜ(b̃0)

∣∣∣ < 1 and |b̃0| ⩽ 1 with absolute

errors of the real and imaginary parts at most 1 ulp. In the following, relative errors will
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be most convenient to work with; by Proposition 10 we have relerror(b̃0) ⩽ 21−p, where
p ⩾ 2 is the working precision.

Warm-up — a note on angle 0. As said, when the angle between a and b is 0, which
is immediately detected from ℑ(b̃0) = 0 (computed at any precision), then AGM(a, b) =
aAGM(1, b0) with a real number 0 < b0 < 1. We need to consider the error induced by

computing ◦
(
a · ◦

(
AGM(1, b̃0)

))
instead.

Recall that b0 = (1 + ϑ)b̃0 with −ε ⩽ ϑ ⩽ ε = 21−p. Since for positive real numbers
each step of the AGM is increasing in each of the two arguments, so is the AGM itself,
and we have

AGM(1, b0) = AGM
(
1, (1 + ϑ)b̃0

)
⩽ AGM

(
1 + ε, (1 + ε)b̃0

)
⩽ (1 + ε)AGM

(
1, b̃0

)
.

By the same kind of argument

AGM(1, b0) ⩾ (1− ε)AGM
(
1, b̃0

)
.

So the relative error of at most ε in the input b̃0 is preserved by the AGM.
By Proposition 7 applied to non-representable numbers and Proposition 3 this rela-

tive error translates into an absolute error satisfying
∣∣∣AGM(1, b0)−AGM

(
1, b̃0

)∣∣∣ ⩽ 2 · 2Exp(AGM(1,b̃0))−p ⩽ 2 · 2Exp(◦(AGM(1,b̃0)))−p

of at most 2 ulp of the rounded value, and the final rounding of the mpfr_agm function
leads to a total error bounded by 3 ulp.

We multiply this value by the exact a; applying (2) with k1 = 3 and k2 = 0 and
taking the final rounding into account leads to an error of at most 7 ulp for the real and
for the imaginary parts of the complex AGM.

The first iteration — entering a quadrant. If ℜ(b̃0) < 0, then significant cancellation
can occur for the arithmetic mean in the first iteration, which thus needs to be analysed
separately.

From now on, we use arbitrary rounding modes and apply Proposition 11 with c = 1.

We let b1 =
√
b0 and b̃1 = ◦

(√
b̃0

)
with

relerror(b̃1) ⩽ 21−p +
(
1 + 21−p

)
21−p ⩽ (

√
2)3 · 21−p

by (18) (where we use ε ⩽ ε1 since ε1 ⩽ 21−p ⩽ 1, ε1 being the relative error on b̃0) and
Proposition 11, and where we have bounded 2 + 21−p ⩽ 2.5 by (

√
2)3 ≈ 2.83. We let

a1 = 1/2 + b0/2 and ã1 = ◦(1/2 + b̃0/2). The imaginary part of ã1 has an error of at
most 1 ulp, and the same holds for the real part if ℜ(b̃0) = 0 or equivalently ℜ(b0) = 0;
the real part of ã1 has an absolute error bounded by

max
(
2, 2−Exp(ℜ(ã1))−1

)
ulp (ℜ(ã1)) .
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Algorithm for AGM

Indeed, let x be the real part of b̃0, and y the real part of ã1, we have y = ◦(1/2 + x/2).
Remember that −1 < x < 1. If −1/2 ⩽ x < 1, then x/2 ⩾ −1/4 and y ⩾ 1/4, and
Exp(y) ⩾ Exp(x/2), and from §1.3.1 the error on y is at most 2 ulp (one from the error on
x/2, and one from the addition). If on the other hand −1 < x < −1/2, then 1/2+x/2 is
exact by Sterbenz’s lemma, and the only error comes from that on x/2, which by §1.3.1
is bounded above by 2Exp(x/2)−Exp(y)ulp(x/2). Since −1/2 < x/2 < −1/4, we have
Exp(x/2) = −1 and the above result follows. This bound also holds when ℜ(b0) = 0. So
by Proposition 10,

relerror(ã1) ⩽ max
(
2, 2−Exp(ℜ(ã1))−1

)
· 21−p.

If ℜ(b̃0) ⩾ 0, then Exp(ℜ(ã1)) ⩾ 0, and we obtain a bound that is similar to the one
above for relerror(b̃1). If b̃0 approaches −1, the relative error in ã1 becomes arbitrarily
bad, as ã1 becomes arbitrarily small.
Letting

k1 = max
(
3,−2Exp(ℜ(ã1))− 2

)
(24) eq:agmk1

we obtain an upper bound of

relerror(ã1), relerror(b̃1) ⩽
(√

2
)k1 · 21−p (25) eq:agmerr1

on the loss of precision in the first iteration.
Notice that, independently of the rounding mode, ã1 and b̃1 lie in the same complex

quadrant of numbers having non-negative real part and an imaginary part of the same
sign as that of b̃0 (or of positive imaginary part if b̃0 is real). During the remainder of
the algorithm, we will not leave this quadrant and thus not see any more cancellation in
the arithmetic mean.
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Figure 1: Extremal (from above) values of a1 (solid curve) and b1 (dotted curve) after
the first iteration of the AGM for ℑ(b0) ⩾ 0. The values are bounded from below by the
x-axis.
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The idea of the analysis. Let us first give the basic idea of the following, rather techni-
cal analysis. Assume a target precision of N bits, that is, a target relative error of about
2−N . If a0 and b0 are of the same order of magnitude, the AGM iteration converges
quadratically, that is, the number of correct digits doubles in each step, and we need
about log2N iterations. Unfortunately, when a0 and b0 are of different orders of mag-
nitude, we have slower convergence. To illustrate this, consider a0 = 1 and b0 = 2−e;
during the first iterations, an ≈ 2−n and bn ≈ 2−e/2n . So we need to increase the
number of iterations by roughly log2 of the absolute value of the exponent of b0/a0;

the precise bound B
(
N, b̃0, ã1

)
on the number of iterations is given in (36). Moreover,

when ℜ(b/a) < 0, the situation of very different exponents in a and b may occur after
one iteration through cancellation as explained above.

Unlike Newton iterations, AGM iterations are not auto-correcting: due to round-
ing errors, we lose a constant number of bits per iteration; so to reach the desired
precision of N bits, we need to carry out all computations at a working precision of

p ∈ N + O
(
B(N, b̃0, ã1)

)
. The following discussion provides explicit bounds for all

these quantities.

Rounding error propagation. Let an = an−1+bn−1

2 , cn = an−1bn−1, bn =
√
cn. The

computation of ã1 and b̃1 and their error analysis have been given above. For n ⩾ 2, we
compute the sequences

ãn = ◦
(
ãn−1 + b̃n−1

2

)
,

c̃n = ◦
(
ãn−1b̃n−1

)
,

b̃n = ◦
(√

c̃n

)
.

Then one sees by induction that ãn and b̃n lie in the same quadrant as ã1 and b̃1 (or, for
that matter, a1 and b1).

Let αn = relerror(ãn), γn = relerror(c̃n) and βn = relerror(b̃n).
By (7) and Proposition 11,

αn ⩽
√
2 max(αn−1, βn−1)

(
1 + 21−p

)
+ 21−p. (26) eq:agmalpha

By (10) and Proposition 11,

γn ⩽ (αn−1 + βn−1 + αn−1βn−1)
(
1 + 21−p

)
+ 21−p. (27) eq:agmgamma

By (18) and Proposition 11,

βn ⩽ 1√
3
γn(1 + 21−p) + 21−p if γn ⩽ 1

4
. (28) eq:agmbeta

Let rn =
(
(
√
2)n+1 − 1

)
r1 for some integer r1 such that α1, β1 ⩽ r12

1−p. We may

use r1 = (
√
2)k1 with k1 as in (24), so that rn ⩽ (

√
2)n+k1+1. We now show by induction

34
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Algorithm for AGM

that αn, βn ⩽ rn2
1−p if the number n of iterations is not too large compared to the

working precision p. For n = 1, this follows from (25) and the definition of r1.
As a preparation for the induction step and taking the shape of (26) to (28) into

account, we carry out the following computation for n ⩾ 2, p ⩾ 2, 289(
√
2+1)

512 ⩽ γ ⩽ 2

(we will only need γ ∈ {
√
2, 2} later) and 0 ⩽ δ ⩽ 1 (we will only need δ ∈ {0, 1}):

R(n, γ, δ) :=
(
γrn−1 + δr2n−1 2

1−p
) (

1 + 21−p
)
+ 1

=
(
γ + δrn−1 2

1−p
)
rn−1 + 1 + 21−p

(
γrn−1 + δr2n−1 2

1−p
)

⩽
(
γ + δ(

√
2)n+k1+2−2p

)
rn−1 + 1 + 21−p

(
(
√
2)n+k1+2 + 2n+k1+1−p

)
.

So assuming p ⩾ n+k1+10
2 we have

R(n, γ, δ) ⩽
(
γ + δ(

√
2)−8

)
rn−1 + 289/256

⩽
(
γ + δ(

√
2)−8

)
√
2

rn + 289/256−
(
γ + δ(

√
2)−8

)
√
2

(
rn −

√
2 rn−1

)

⩽
(
γ + δ(

√
2)−8

)
√
2

rn + 289/256−
(
γ + δ(

√
2)−8

)
√
2

(√
2− 1

)
(
√
2)3

since r1 ⩾ (
√
2)3

⩽
(

γ√
2
+

δ

16
√
2

)
rn since δ ⩾ 0 and γ ⩾ 289(

√
2 + 1)

512
.

Using the induction hypothesis for n ⩾ 2 on (26) and (27) yields

αn ⩽ R(n,
√
2, 0) 21−p ⩽ rn2

1−p,

γn ⩽ R(n, 2, 1) 21−p ⩽
√
2 · 33

32
· rn−1 2

1−p

⩽
√
6 rn−1 2

1−p

⩽ 4 · (
√
2)n+k1 · (

√
2)−(n1+k1+8) = 1/4.

So (28) is valid, and substituting γn by its upper bound
√
6 rn−1 2

1−p yields

βn ⩽ R(n,
√
2, 0) 21−p ⩽ rn2

1−p.

To summarise, we compute in iteration n approximations ãn and b̃n to an and bn with
a relative error bounded above by

2
n+k1+3

2
−p assuming that the working precision satisfies p ⩾ n+ k1

2
+ 5. (29) eq:agmprec

Mathematical error. We also need to estimate the error made by carrying out only a
finite number of iterations. Let z satisfy ℜ(z) ⩾ 0 and z ̸= 0, 1, and consider the optimal

35

AGM sequences (a′n) and (b′n) computed (with infinite precision) from a′0 = 1 and b′0 = z.
Let N ′ ∈ N and

n ⩾ B′(N ′, z) := max
(
1,
⌈
log2

∣∣ log2 |z|
∣∣⌉)+ ⌈log2(N ′ + 2)⌉+ 2

(where log2 0 is to be understood as −∞). Then by [6, Prop. 3.3, p. 88],

a′n = (1 + ϑ2)AGM(1, z) with |ϑ2| ⩽ 2−N ′
.

(Notice that here, the relative error as defined in [6, Def. 1.2, p. 20] is taken with the
roles of the correct and the approximated values reversed compared to our definition.)

In our context, we may have ℜ(b0) < 0, but after one iteration, ℜ(b1/a1) ⩾ 0. So
we consider z = b′0 = b1/a1, so that by homogeneity, an+1 = a1a

′
n, bn+1 = a1b

′
n and

AGM(1, b0) = AGM(a1, b1) = a1AGM(1, z). Thus we need bounds on

|z| =
∣∣∣∣
b1
a1

∣∣∣∣ =
|
√
b0|
|a1|

.

Since we have to decide on the number of iterations from approximations to b0 and a1
instead of the correct values, we may wish to replace b0 by b̃0 and a1 by ã1. (In fact
the arguments will be quite delicate and switch between the different quantities.) The
relative errors derived above on b̃0 of 2

1−p and on ã1 of (
√
2)k1 21−p with p ⩾ k1/2+5 ⩾ 5

show that

(
1− 2−4

) ∣∣∣b̃0
∣∣∣ ⩽ |b0| ⩽

(
1 + 2−4

) ∣∣∣b̃0
∣∣∣ and

(
1− 2−4

)
|ã1| ⩽ |a1| ⩽

(
1 + 2−4

)
|ã1| .

Since b̃0 = ◦(b0) with both parts rounded towards zero, we even have
∣∣∣b̃0
∣∣∣ ⩽ |b0|. Alto-

gether we have the (much coarser) following bounds:

∣∣∣b̃0
∣∣∣ ⩽ |b0| ⩽

√
2
∣∣∣b̃0
∣∣∣ and

1√
2
|ã1| ⩽ |a1| ⩽

√
2 |ã1| . (30) eq:agmabsb0a1

The quantity of interest is a (double) logarithm, so it is helpful to consider the (easily
available) exponents of the numbers. Since b̃0 = ◦(b0) with both parts rounded towards
zero we have

Exp(ℜ(b̃0)) = Exp(ℜ(b0)) and Exp(ℑ(b̃0)) = Exp(ℑ(b0)). (31) eq:agmexpb0

Recall that ã1 = ◦
(
1+b̃0
2

)
so that ℑ(ã1) = ℑ(b̃0)/2 does not require any additional

rounding; together with (31) this yields

Exp(ℑ(ã1)) = Exp(ℑ(b̃0))− 1 = Exp(ℑ(b0))− 1 = Exp(ℑ(a1)). (32) eq:agmexpima1

However ℜ(ã1) = ◦(1 + ◦(ℜ(b0)))/2 is computed with two roundings, so it takes a bit
more work to relate it to ℜ(a1) = (1+ℜ(b0))/2, which we postpone to the following case
distinction since we do not need a completely general result.

36
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Algorithm for AGM

The above bound B′ for the required number of iterations n grows with
∣∣ log2 |z|

∣∣, so
problematic situations may occur when |z| is either very large or very small; the former
may happen when |b0| is large and/or |a1| is small, the latter when |b0| is small and/or
|a1| is large. Remember that in our setting we have the bounds

|b0| ⩽ 1, so that |a1| =
∣∣∣∣
b0 + 1

2

∣∣∣∣ ⩽ 1.

thus interesting situations can occur only when either |b0| is small or |a1| is small, that
is, b0 is close to −1; and both cannot happen simultaneously. This leads to the following
case distinction:

(a) Assume Exp(ℜ(b̃0)),Exp(ℑ(b̃0)) ⩽ −1.
By (31) this is equivalent to Exp(ℜ(b0)),Exp(ℑ(b0)) ⩽ −1, whence ℜ(b0),ℑ(b0) <
1/2 and

|b0| ⩽
√
2

2
< 1.

This implies

1−
√
2

2
⩽ 2|a1| ⩽ 1 +

√
2

2
and 1/8 ⩽ |a1| ⩽ 1

and we know |
√
b0| ⩾

∣∣∣∣
√

b̃0

∣∣∣∣ by (30). Collecting these upper and lower bounds, we

obtain for z =
√
b0/a1 that

√∣∣∣b̃0
∣∣∣ ⩽ |z| ⩽ 8 and

∣∣ log2 |z|
∣∣ ⩽ max

(
3,−1

2
log2

∣∣∣b̃0
∣∣∣
)
.

Using the estimate
∣∣∣b̃0
∣∣∣ ⩾ max

(
|ℜ(b̃0)|, |ℑ(b̃0)|

)
⩾ 2max(Exp(ℜ(b̃0)),Exp(ℑ(b̃0)))−1

we finally obtain

∣∣ log2 |z|
∣∣ ⩽ max

(
3,−1

2
max

(
Exp(ℜ(b̃0)),Exp(ℑ(b̃0))

)
+

1

2

)
. (33) eq:agmlb

(b) Assume Exp(ℑ(b̃0)) ⩽ −1 and Exp(ℜ(ã1)) ⩽ −2.
By (32) the first condition implies Exp(ℑ(a1)) ⩽ −2 or |ℑ(a1)| < 1/4. The
second condition together with the first inequality of Proposition 3 implies that

Exp
(
(1 + ℜ(b̃0))/2

)
⩽ −2, or

∣∣∣1 + ℜ(b̃0)
∣∣∣ < 1/2. So in fact −1 < ℜ(b̃0) < −1/2,

and then −1 < ℜ(b0) < −1/2 as well. This in turn implies 0 < ℜ(a1) < 1/4.

Putting these together, we obtain

1/2 ⩽ |ℜ(b0)| ⩽ |b0| or 1/
√
2 ⩽ |

√
b0|, and |a1| ⩽

√
2/4,

37

and we already know
|b0| ⩽ 1 or |

√
b0| ⩽ 1

from our general setting and
|a1| ⩾ |ã1|/

√
2

by (30), whence

2 ⩽ |z| ⩽
√
2

|ã1|
and

∣∣ log2 |z|
∣∣ ⩽ − log2 |ã1|+

1

2
.

Using the estimate

|ã1| ⩾ max (|ℜ(ã1)|, |ℑ(ã1)|) ⩾ 2max(Exp(ℜ(ã1)),Exp(ℑ(ã1)))−1

and (32) we finally obtain

∣∣ log2 |z|
∣∣ ⩽ −max

(
Exp(ℜ(ã1)),Exp(ℑ(b̃0))− 1

)
+

3

2
. (34) eq:agmla

(c) In the remaining case, since we are not in (a), at least one of Exp
(
ℜ(b̃0)

)
and

Exp
(
ℑ(b̃0)

)
, or equivalently by (31) at least one of Exp(ℜ(b0)) and Exp(ℑ(b0))

is 0 or larger, so that

1

2
⩽ max(|ℜ(b0)|, |ℑ(b0)|) ⩽ |b0| ⩽ 1 and

1√
2
⩽
√
|b0| ⩽ 1.

If Exp
(
ℑ(b̃0)

)
⩾ 0, then Exp(ℑ(a1)) ⩾ −1 by (32) and

|a1| ⩾ |ℑ(a1)| ⩾ 1/4.

Otherwise since we are not in (b), Exp(ℜ(ã1)) ⩾ −1 or |ℜ(ã1)| ⩾ 1/4; as it is known
to be positive in fact ℜ(ã1) ⩾ 1/4. In precision at least 5, the value 1/4 · 31/32
is representable and smaller than 1/4 so that the value rounded to ℜ(ã1) satisfies
(1 + ℜ(b̃0))/2 > 31/128 and ℜ(b̃0) > −33/64. In precision at least 5, the value
−34/64 is representable and smaller than −33/64 so that the unrounded value
satisfies ℜ(b0) > −17/32, which implies ℜ(a1) > 15/64 > 1/8 and

|a1| ⩾ |ℜ(a1)| ⩾ 1/8.

We also know |a1| ⩽ 1 in our general setting. Altogether

1√
2
⩽ |z| ⩽ 8 and

∣∣ log2 |z|
∣∣ ⩽ 3. (35) eq:agml

38
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Algorithm for AGM

Letting L(b̃0, ã1) denote the above bound on | log2 |z|| depending on the exponents
occurring in b̃0 and ã1, and counting the additional first iteration to compute ã1 and
b̃1, not present in the above analysis, we fix a number of iterations n such that n ⩾
B(N, b̃0, ã1) with

B(N, b̃0, ã1) = max
(
1,
⌈
log2 L(b̃0, ã1)

⌉)
+ ⌈log2(N + 4)⌉+ 3. (36) eq:agmbound

Then
an = (1 + ϑ2)AGM(1, b0) with |ϑ2| ⩽ 2−(N+2).

Total error and working precision. Combining with (29), we obtain for a sufficiently
large precision p and sufficiently many iterations n that AGM(1, b0) =

1+ϑ1
1+ϑ2

ãn = (1+ϑ)ãn

with |ϑ1| ⩽ 2
n+k1+3

2
−p and |ϑ2| ⩽ 2−(N+2), so that

|ϑ| ⩽ |ϑ1|+ |ϑ2|
|1− |ϑ2||

⩽ 4

3

(
2

n+k1+3
2

−p + 2−(N+2)
)

for N ⩾ 2. So after n = B(N, b̃0, ã1) steps of the AGM iteration at a working precision
of p ⩾ N + n+k1+7

2 ⩾ n+k1+10
2 , we obtain ãn which approximates AGM(1, b0) with a

relative error bounded by 2
3 · 2−N .

Finally, we let z = AGM(a, b) = aAGM(1, b0) and z̃ = ◦(aãn), where a is known ex-
actly. By (10) and Proposition 11, using thatN ⩾ 2 and k1 ⩾ 3 imply n = B(N, b̃0, ã1) ⩾
7 and p ⩾ N + 8 ⩾ 10, this leads to a relative error bounded by 2−N .

Summary. In our analysis, the working precision p depends on

k1 = max(3,−2Exp(ℜ(ã1))− 2)

of (24), which in turn depends not only on the input data, but also on the working
precision of the first AGM iteration. It is not enough to carry out this computation at
arbitrarily low precision: Since b̃0 is computed as a/b or b/a depending on the respec-
tive sizes of the numbers and it is rounded, the computation of ℜ(ã1) requires double
rounding, which may even lead to a wrong exponent if the precision is too low. Precisely,
the exponent of ℜ(ã1) may only be wrong if ℜ(b̃0) is so close to −1 that it is rounded
towards zero to −1 plus 1 ulp, that is, ℜ(b̃0) = −(1 − 2−p). Then ℜ(ã1) = 2−p−1 with
Exp(ℜ(ã1)) = −p has lost all information on ℜ(b0) and reflects only the rounding error.
In all other cases a significant digit is retained and the exponent is correct. So k1 may be
computed by increasing the precision for this precomputation until Exp(ℜ(ã1)) > −p.

Then we fix a desired accuracy N (around the target precision plus a safety margin),
compute L(b̃0, ã1) by (33), (34) or (35) and the number of iterations n = B(N, b̃0, ã1)
by (36) (more often than not, this will result in n = ⌈log2N⌉ + 5). Then the working
precision is given by

p = N +

⌈
n+ k1 + 7

2

⌉
.
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Using Propositions 9 and 7, the complex relative error of 2−N may be translated
into an error expressed in ulp. With z̃ = x̃ + iỹ the computed approximation of z =
AGM(a, b), let kR = max(Exp(ỹ)−Exp(x̃)+1, 0)+1, and kI = max(Exp(x̃)−Exp(ỹ)+
1, 0) + 1. Then we have error(x̃) ⩽ 2kR+p−Nulp(x̃) and error(ỹ) ⩽ 2kI+p−Nulp(ỹ).

In practice, one should take this additional loss into account. If rounding fails after
the first computation, nevertheless the values of kR and kI will most likely not change
with a larger precision. So one should let k′ = max(kR, kI), replace N by N + k′ and
adapt the number of iterations and the working precision accordingly.

The number of iterations is also slightly pessimistic in practice, in particular the
additional constant in (36). So the computations may be stopped earlier if the numbers
occurring in the AGM iterations do not change any more, since then additional iterations
will fix the result.

4 Complex ball arithmetic

We propose a simple implementation of complex balls, which keep track of rounding
errors over several operations. The originality of our implementation is that it uses
complex relative errors as in §1.1.4. A complex ball of type mpcb_t is defined by a non-
zero centre c of type mpc_t and a relative radius r of type mpcr_t, and it represents all
complex numbers z = c(1+ϑ) with |ϑ| ⩽ r, or equivalently the closed circle with centre c
and radius r|c|. In the following, we use the notation (c, r) for this complex ball.

The radius type represents the non-negative real half-axis from 0 to ∞, including
this special infinite number. It is implemented internally as a non-negative floating
point value with a signed 64 bit integer mantissa m, normalised to 31 bits, so that two
mantissas may be multiplied without rounding. The sign is used to encode r =∞, a zero
mantissa encodes 0, otherwise a mantissa is always positive. The exponent is encoded
as a 64 bit integer e such that (for finite radii) r = m · 2e with 0 ⩽ m < 231. In most
applications a radius r ⩾ 1 will be meaningless, so that in practice we will almost always
have e ⩽ −31, or r =∞.

Mathematical functions are then understood to work on sets and to “round up”:
They return a complex ball containing the set obtained by applying the function to
every combination of arguments from the input balls. Reasonable efforts are made to
return small balls, but there is no guarantee that the returned ball is minimal.

In any case, the centre of the resulting ball is obtained by applying the corresponding
MPC function on the centres of the input balls with rounding to nearest. The analyses
of §3 then provide upper bounds on the radius.

Compared to a representation decomposed along the real and imaginary parts, with
separate relative or absolute errors, which leads to rectangles instead of circles, our
representation simplifies multiplicative operations and makes additive operations more
complicated. Determining branch cuts, which often depend on the decomposition of a
complex number into real and imaginary parts, are probably also made more compli-
cated. The biggest drawback is that intervals centred in 0 may not be represented at all.
More generally, intervals containing 0 are also not meaningful: They correspond to balls
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Algorithm for AGM using ball arithmetic

with r ⩾ 1, which means that even the most significant digit of the centre is uncertain.

4.1 Crossing the axes

c = x+ iy

x

To correctly evaluate functions at branch cuts, it may be useful to examine how
complex balls are positioned with respect to the axes. As already mentioned above, a
ball (c, r) contains the origin if and only if r ⩾ 1.

For c = x + iy, it crosses (or touches) the real axis if and only if it contains the
point x, which means that

|x− c| ⩽ r|c| ⇔ |y| ⩽ r|c| ⇔ y2 ⩽ r2
(
x2 + y2

)
⇔
(
1− r2

)
y2 ⩽ r2x2.

When does a complex ball touch the real axis? This means that (1−r2)y2 = r2x2, which
happens obviously when r = 0 and y = 0, so that the ball is a point located on the real
axis; or when r = 1 and x = 0, so that the ball is centred on the imaginary axis and
touches the origin. All other cases are actually impossible with machine-representable
numbers. Assuming otherwise, recall that x, y and r are rational numbers with denomitor
a power of 2. If r is an integer, then it is either 1, which we already covered; or larger, and
then the origin is contained in the interior of the ball, which must cross the real axis. So
let r = a/2n with a an odd integer and n ⩾ 1. Then 4n−a2 = 4n(1− r2) = (2−nrxy−1)2

is the square of an odd integer. But all odd squares are 1 modulo 4, whereas the left-hand
side is 3 modulo 4, a contradiction.

Symmetrically, the complex ball (x+ iy, r) crosses (or touches) the imaginary axis if
and only if (

1− r2
)
x2 ⩽ r2y2.

It touches the imaginary axis if and only if r = 0 and x = 0, so that the ball is a point
on the imaginary axis; or r = 1 and y = 0, so that the ball is centred on the real axis
and touches the origin.

The ball has a common point with the negative real axis (including the origin) if and
only if either x ⩽ 0 and the ball has a common point with the real axis (since then x is
such a common point); or x > 0 and the ball contains the origin.

4.2 mpc_agm

Implementing the AGM (see §3.10) for complex balls would require to check whether
the input crosses the negative real axis, where we have placed the branch cut (which is
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inherited from the branch cut of the complex square root). However if the input is a
complex number, which can be considered to be exact, then an implementation using
complex balls can obtain a correctly rounded result with a greatly simplified analysis
compared to §3.10.

In a first step, assuming that |a| ⩾ |b|, we compute b0 = b/a as a complex ball centred
around b̃0.

If ℑ(b̃0) = 0, then the angle between a and b is 0 or π. Regardless of the rounding
direction, ℜ(b̃0) also has the same sign as ℜ(b0). If ℜ(b̃0) > 0, then the angle is 0 and
the computation can be outsourced to a real AGM as described in §3.10. If ℜ(b̃0) <
0, then the angle is π, and the complex ball containing b0 crosses the negative real
axis; the first step of the AGM with an implementation of mpcb_sqrt that respects
the branch cut would end up with a ball containing ±

√
|b0| · i and thus the origin,

which is completely useless. We may, however, in this case use an implementation of
the square root placing the branch cut differently and returning a ball centred at some
approximation of +

√
|b0| · i, and then continue with the AGM iterations.

After n iterations starting from 1 and a ball around b0, we end up with balls (ãn, ra)
and (b̃n, rb) such that the exact values satisfy an = (1 + ϑa)ãn with |ϑa| ⩽ ra and
bn = (1 + ϑb)b̃n with |ϑb| ⩽ rb.

By [6, p.87] we have |AGM(1, b0)− an| ⩽ |an − bn|. Plugging the expressions for an
and bn into this inequality yields

|AGM(1, b0)− (1 + ϑa)ãn| ⩽ |ãn − b̃n|+ |ϑaãn|+ |ϑbb̃n|
The lower triangle inequality gives

|AGM(1, b0)− (1 + ϑa)ãn| ⩾ |AGM(1, b0)− ãn| − |ϑa| · |ãn|,
and putting these inequalities together we obtain

|AGM(1, b0)− ãn| ⩽
(∣∣∣∣∣

ãn − b̃n
ãn

∣∣∣∣∣+ 2|ϑa|
)
|ãn|+ |ϑb| · |b̃n|.

Write b̃n = (1 + ϑa,b)ãn and ra,b = |ϑa,b|; then we obtain

|AGM(1, b0)− ãn| ⩽
(
ra,b + 2ra + rb(1 + ra,b)

)
|ãn| ⩽

(
2(ra,b + ra) + rb

)
|ãn| if rb ⩽ 1.

Otherwise said, AGM(1, b0) is contained in the ball
(
ãn, ra,b+2(ra+rb)

)
, and multiplying

this with the ball (a, 0) we obtain a ball containing AGM(a, b). If this can be rounded to
a unique MPC number with the desired rounding mode, then we have correctly computed
mpc_agm; otherwise we need to repeat the computations at a higher precision, and the
exponent of the radius gives an indication on the necessary precision increase.

In practice convergence of the sequences of ãn and b̃n is often such that ãn = b̃n
and thus ra,b = 0. Otherwise the two generally differ by only 1 ulp, and a very coarse
estimate of ra,b as a power of 2

ra,b ⩽ 2
max

(
Exp(ℜ(ãn−b̃n)),Exp(ℑ(ãn−b̃n))

)
+1−(min(Exp(ℜ(ãn)),Exp(ℑ(ãn)))−1)

is enough, where Exp(0) is considered as −∞.
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Complex balls

Centre and radius as relative error

(c, r) = {z ∈ C : |z − c| ⩽ r |c|}
= {z = c(1 + ϑ) : |ϑ| ⩽ r}

Scaling is easy
s(c, r) ⊆ (sc, r) for s ∈ R

Multiplication is easy

(c1, r1) + (c2, r2) ⊆ (c1c2, r1 + r2 + r1r2)

Square root is easy √
(c, r) ⊆ (

√
c, r/2)

Addition is more difficult

(c1, r1) + (c2, r2) ⊆ (c1 + c2, (|c1|r1 + |c2|r2)/|c1 + c2|)

0 is not representable.
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Complex balls in C

typedef struct {
mpc_t c;
mpcr_t r;

} mpcb_t;

typedef struct {
int64_t mant;
int64_t exp;

} mpcr_t;

radius 0: mant = 0

radius ∞: mant < 0

31 bit normalised mantissa: 230 ⩽ mant < 231
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Functions on radii

Surprisingly many and quirky functions...
Results are normalised and rounded up (unless exception).

Predicates
▶ mpcr_inf_p
▶ mpcr_zero_p
▶ mpcr_lt_half_p
▶ mpcr_cmp

Setters
▶ mpcr_set_inf
▶ mpcr_set_zero
▶ mpcr_set_one
▶ mpcr_set
▶ mpcr_set_ui64_2si64
▶ mpcr_max

Output
▶ mpcr_out_str
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Functions on radii

Arithmetic
▶ mpcr_add, mpcr_mul, …
▶ mpcr_sub_rnd

Takes MPFR_RNDU, MPFR_RNDD.
▶ mpcr_c_abs_rnd

Used for error of addition

(c1, r1) + (c2, r2) ⊆ (c1 + c2, (|c1|r1 + |c2|r2)/|c1 + c2|)

▶ mpcr_add_rounding_error (r, p, rnd)
Accounts for shift of centre by 1/2 ulp or 1 ulp depending on rnd.
Adds (1 + r)2−p or twice this to r.
Called once at the end of each operation.
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Principles of complex balls

(c1, r1) ◦ (c2, r2) ⊆ (c1 ◦ c2, r)
One precision for real and imaginary part
Initialised without precision: mpcb_init (z), mpcb_clear (z)
Precisions are tracked automatically.

▶ z1 ◦ z2 gets minimum precision of z1 and z2.
▶ Precision is not decreased when radius increases.
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Setting complex balls

mpcb_set_inf (z)
mpcb_set (z, z1)

Challenges: Exact input and inputs with errors.

mpcb_set_ui_ui (z, re, im, prec)
Uses maximum of prec and sizeof (ulong).
mpcb_set_c (z, c, prec, err_re, err_im)
Assumes c has err_re and err_im half-ulp errors.

▶ If prec large and err_re and err_im = 0: exact, r = 0.
▶ Otherwise, r encodes err_re, err_im and rounding of c.
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Computations with complex balls

mpcb_neg (z, z1)
mpcb_add (z, z1, z2)
mpcb_mul (z, z1, z2)
mpcb_sqr (z, z1, z2)
mpcb_pow_ui (z, z1, e)
mpcb_sqrt (z, z1)
mpcb_div (z, z1, z2)
mpcb_div_2ui (z, z1, e)
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Rounding complex balls

mpcb_round (c, z, rnd)
Rounds the centre of z to c (with its own precision).

mpcb_can_round (z, prec_re, prec_im, rnd)
true
if rounding any complex (mathematical) number in z to
a complex (floating point) number of precision (prec_re, prec_im)
in direction rnd
yields the same result and ternary return value.
Beware of infinite loops for exact results.
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“Normal” functions using balls

mpc_agm
Uses a priori error analysis.
Tests compare with mpc_mpcb_agm.

mpc_eta_fund (rop, z, rnd)

q1/24 = exp(2πiz/24)

q =
(

q1/24
)24

η = q1/24
(
1− q − q2 + q5 + q7 − q12 − q15 + · · ·

)
q1/24 is computed as mpc with an a priori error analysis,
then handled with mpcb_set_c.
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What is next?

Question the design choices.
Handle 0?

▶ Exact 0 is easily encoded, but needs case distinctions.
▶ Balls around 0 need absolute radius encoding

and more case distinctions.
Use balls internally for series (special values of special functions)?
Use balls in existing functions instead of error analysis?
Implement functions on balls?
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